Biopolymer-Mimetic Worm-like Micelle Tissue Scaffolds

生物聚合物模拟蠕虫状胶束组织支架

基本信息

  • 批准号:
    6569334
  • 负责人:
  • 金额:
    $ 20.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-30 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a novel fibrillar scaffold for artificial tissue growth that combines the key attributes of synthetic biomaterials and fibrillar biopolymers, Synthetic biomaterials allow for defined composition tailored for selective cell adhesion with no risk of viral or pathogen transmission. Fibrillar biopolymer gels, such as type I collagen and fibrin, allow cellularity to be obtained directly by cell entrapment during self-assembly and are conducive to structural and compositional remodeling. For the preparation of worm-like micelle (WLM) scaffolds we will use block copolymers that contain at least three distinct regions: a crosslinkable hydrophobic core, a hydrophilic corona, and a cell adhesion peptide. The hydrophobic core will be degradable under physiological conditions (e.g., polyaliphatic esters). Polyethylene oxide (PEO) will be used as the hydrophilic component and simple cell adhesion peptides will be conjugated to the PEO terminus. After formation of a cell suspension with the WLM in aqueous solution, the hydrophobic cores of the WLMs will be chemically fixed through simple catalytic cross linking, allowing direct cell entrapment into an entangled network of stable but ultimately degrading WLMs, analogous to the fibrillar bi0polymers. Rheometry, cryo-TEM, and SAXS will be used to verify the integrity of the WLM network and to characterize physical properties relevant to cell-network mechanical interactions that lead to network contraction and alignment when a mechanical constraint is applied. The molecular parameters of the amphiphilic block copolymers will be systematically tuned to control the WLM formation, crosslinking density, degradation rates and ultimate mechanical behavior. Efforts to approximate the relevant material properties of the biopolymer gels will be emphasized. With cells entrapped into a cross-linked WLM network, cell induced network compaction and alignment will be analyzed using quantitative polarized light microscopy, and the evolving WLM degradation and ECM deposition characterized using biochemical and histological analyses. Molecular weights and cross-link density will be adjusted accordingly, and various degradable cores will be pursued as necessary, if degradation and deposition occur on disparate time scales. Cell viability and polymer degradation will be monitored. Ultimate mechanical properties, ECM composition, and ECM structure of the artificial tissues following in vitro incubation will be compared to soft connective tissues. The resultant artificial tissues will be assayed in a rat subcutaneous implantation model to assess biocompatibility.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT T TRANQUILLO其他文献

ROBERT T TRANQUILLO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT T TRANQUILLO', 18)}}的其他基金

Biologically-engineered Transcatheter Vein Valve: Design Optimization and Preclinical Testing
生物工程经导管静脉瓣膜:设计优化和临床前测试
  • 批准号:
    10594865
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
Biopolymer-guided human stem cell assembly for engineered myocardium
生物聚合物引导的人类干细胞组装用于工程化心肌
  • 批准号:
    8328585
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human
从人体体外培养的完全生物组织工程肺动脉瓣
  • 批准号:
    8083856
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human cells for pediatric patients
完全生物组织工程肺动脉瓣,由人体细胞在体外培养,供儿科患者使用
  • 批准号:
    10188591
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8527302
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Perfusable and beating engineered myocardium from human progenitor cells based on
基于人类祖细胞的可灌注和跳动工程心肌
  • 批准号:
    8138261
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human cells for pediatric patients
完全生物组织工程肺动脉瓣,由人体细胞在体外培养,供儿科患者使用
  • 批准号:
    9520733
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8242099
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Biopolymer-guided human stem cell assembly for engineered myocardium
生物聚合物引导的人类干细胞组装用于工程化心肌
  • 批准号:
    8529260
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8649073
  • 财政年份:
    2011
  • 资助金额:
    $ 20.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了