Embedding measures into multi-dimensional stochastic processes and rough paths

将测量嵌入到多维随机过程和粗糙路径中

基本信息

  • 批准号:
    1941799
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

A classic problem in stochastic analysis is the Skorokhod embedding problem: given a Brownian motion and a distribution on the reals, the task is to stop the Brownian trajectories such that it matches the given distribution. Despite the abstract formulation, this problem has found many applications including mathematical finance, statistics, and functional limit theorems. More recently, it played a central part in combining ideas from optimal transport and martingale theory. Skorokhod's initial question makes immediately sense for multi-dimensional martingales (and with some reformulations also for classes of more general stochastic processes). While some existence results are known, the literature gets very quickly sparse when it comes to concrete constructions of such stopping times. An attractive approach to the multidimensional Skorokhod embedding is the recent martingale optimal transport theory ("A. Cox, M. Beiglbock and M. Huesmann. "Optimal transport and Skorokhod embedding", Inv. Math. May 2017,2: 327-400). Martingale optimal transport leads to proofs of existence and optimality of solutions to Skorokhod embeddings even when the underlying process is multidimensional, but the proofs are not-constructive and typically do not help to actually construct the stopping time for a given target distribution. The goal of this research proposal is to produce new approaches to the Skorokhod multidimensional embedding problem that can lead to a concrete construction of such stopping times; a further aim is to extend the existing theory to be able to cover examples that arise in rough path theory and to explore connections with optimal martingale transport and other new applications. This project falls within the EPSRC Statistics and applied probability research area. Paul Gassiat from University Paris-Dauphine will be involved as a collaborator.As a first step, we will revisit the so-called Root solution of the Skorokhod embedding: Root showed that for one-dimensional Brownian motion, the stopping time can be realized as the hitting time of a subset of time-space. In this case, recent work has shown that this subset of time-space can be computed as the free boundary of a parabolic partial differential equation (see, A. M. G. Cox, J.Wang. "Root's barrier: Construction, optimality, and applications to variance options". The Annals of Applied Probability, 23(3):859-894, 2013; P. Gassiat, H. Oberhauser, and G. dos Reis. "Root's barrier, viscosity solutions of obstacle problems and reflected FBSDEs." Stochastic Processes and their Applications 125.12 (2015): 4601-4631.) or alternatively as the solution of an integral equation, (see P. Gassiat, A. Mijatovic and H Oberhauser. "An integral equation for Root's barrier and the generation of Brownian increments.", The Annals of Applied Probability 25.4 (2015): 2039-2065). In fact, abstract potential theoretic arguments show that Root type solutions hold for a large class of multidimensional Markov processes and these arguments can be reinterpreted in terms of recent advances in Skorokhod embeddings.This project falls within the EPSRC Mathematical Analysis research area.
随机分析中的一个经典问题是Skorokhod嵌入问题:给定布朗运动和实数上的分布,任务是停止布朗轨迹,使其匹配给定的分布。尽管是抽象的公式,这个问题已经发现了许多应用,包括数学金融,统计和功能极限定理。最近,它在结合最优运输和鞅理论的思想方面发挥了核心作用。Skorokhod的初始问题对于多维鞅有直接的意义(并且对于更一般的随机过程类也有一些重新表述)。虽然一些存在性结果是已知的,但当涉及到这种停时的具体构造时,文献变得非常稀疏。一个有吸引力的方法来多维Skorokhod嵌入是最近的鞅最优运输理论(“A。考克斯,M. Beiglbock和M. Huesmann“最佳运输和Skorokhod嵌入”,Inv. 2017年5月,2:327-400)。鞅最优运输导致证明存在性和最优的解决方案Skorokhod嵌入,即使底层过程是多维的,但证明是不建设性的,通常无助于实际构建一个给定的目标分布的停时。本研究提案的目标是产生新的方法来Skorokhod多维嵌入问题,可以导致这样的停时的具体建设;进一步的目的是扩展现有的理论,能够覆盖的例子中出现的粗糙路径理论,并探索与最优鞅运输和其他新的应用程序的连接。这个项目属于EPSRC统计和应用概率研究领域的福尔斯。作为第一步,我们将回顾Skorokhod嵌入的所谓根解:根表明,对于一维布朗运动,停止时间可以实现为时间-空间子集的击中时间。在这种情况下,最近的工作表明,这个时空子集可以计算为抛物型偏微分方程的自由边界(见A。M. G.题名其余部分:考克斯.“根的障碍:建设,最优性和应用方差选项”。The Annals of Applied Probability,23(3):859-894,2013; P. Gassiat,H. Oberhauser和G.多斯雷斯。“根的障碍,粘度解决方案的障碍问题和反映FBSDES。随机过程及其应用125.12(2015):4601-4631。或者作为积分方程的解(参见P. Gassiat,A. Mijatovic和H Oberhauser。“根的障碍和布朗增量的生成的积分方程。”,应用概率年鉴25.4(2015):2039-2065)。事实上,抽象的潜在的理论论据表明,根型解决方案持有的一大类多维马尔可夫过程,这些参数可以重新解释Skorokhod embeddings.This项目的最新进展属于EPSRC数学分析研究领域内福尔斯。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A free boundary characterisation of the Root barrier for Markov processes
马尔可夫过程根势垒的自由边界表征
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

微分动力系统的测度和熵
  • 批准号:
    11101447
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
  • 批准号:
    10643012
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ModRNA-based Direct Programming of Universal Donor hiPSCs into Immune Evasive Beta Cells
基于 ModRNA 的通用供体 hiPSC 直接编程至免疫逃避型 β 细胞
  • 批准号:
    10774361
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
  • 批准号:
    10717223
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Therapeutic Strategy to Treat Alzheimer's Disease by VGF Delivery into Brain
通过将 VGF 输送至大脑来治疗阿尔茨海默病的治疗策略
  • 批准号:
    10738951
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Transient Vanilloid Receptors and Vulvar Pain: New Therapeutic Targets for Vulvodynia
瞬时香草酸受体和外阴疼痛:外阴痛的新治疗靶点
  • 批准号:
    10582414
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Factors Influencing Pediatric Asthma into Adulthood (FIPA2)
影响成年期小儿哮喘的因素 (FIPA2)
  • 批准号:
    10778115
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integration of Geriatric Care into Dialysis Clinics
将老年护理纳入透析诊所
  • 批准号:
    10655156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
  • 批准号:
    10735164
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Global studies into the Genetic Architecture of the Brain's White Matter Network through Harmonized and Coordinated Analyses in the ENIGMA-Consortium
通过 ENIGMA 联盟的统一和协调分析对大脑白质网络的遗传结构进行全球研究
  • 批准号:
    10720443
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了