MODELING TREATMENT USE & EFFECTIVENESS IN MENTAL ILLNESS
模拟治疗使用
基本信息
- 批准号:6499366
- 负责人:
- 金额:$ 41.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-02-01 至 2004-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Applicant's abstract): This application seeks support for a team
of statisticians, economists, clinicians, and mental health services
researchers to collaborate on the development and application of discrete
choice models for understanding treatment use and for causal inferences in
experimental and naturalistic studies of mental illness. By studying how
patients are matched with treatments in extant systems, researchers will gain
greater insight into the determinants of quality of care. The Specific Aims
will involve the 1) extension of likelihood-based methods to estimate treatment
effectiveness at the levels actually received using experimental data from two
influential clinical trials (Schulberg, Block, Madonia et al., Acrh Gen
Psychiatry 1996;53:913-9 & Rosenheck, Neale, Arch Gen Psychiatry
1998;55:459-66) and to compare these estimates with those based on conventional
approaches, such as intention-to-treat, adequate, and completer principles, 2)
development of new models of discrete choice to explain variation in treatment
use based on patient, provider, and insurance characteristics for privately
insured and Medicaid beneficiaries, and 3) application of these discrete choice
models to explain variation in adherence with treatment recommendations and in
treatment effectiveness for depression and for schizophrenia across a diverse
array of practice settings. An Advisory Board comprised of leaders in
statistics, economics, and psychiatry will convene annually to validate methods
and ensure integration of techniques into mental health services research. The
methodological advances from this research will enable mental health
researchers and policy makers to better characterize usual care and to expand
the inferences drawn from clinical trials.
描述(申请人摘要):此申请寻求团队支持
统计学家、经济学家、临床医生和心理健康服务机构
研究人员合作开发和应用离散
用于理解治疗使用和因果推断的选择模型
精神疾病的实验和自然主义研究。通过研究
患者与现有系统中的治疗方法相匹配,研究人员将获得
更深入地了解护理质量的决定因素。具体目标
将涉及1)扩展基于可能性的方法来估计治疗
实际收到的水平的有效性使用两个实验数据
有影响力的临床试验(Schulberg,Block,Madonia等,Acrh Gen
精神病学1996;53:913-9 & Rosenheck,Neale,Arch Gen Psychiatry
1998;55:459-66),并将这些估计值与基于常规方法的估计值进行比较。
方法,如意向治疗、充分和完成原则,2)
开发新的离散选择模型,以解释治疗差异
基于患者、提供者和保险特征的使用,
被保险人和医疗补助受益人,以及3)这些离散选择的应用
模型来解释治疗建议依从性的变化,
抑郁症和精神分裂症的治疗效果
一系列的实践设置。一个由领导人组成的咨询委员会,
统计学、经济学和精神病学将每年召开一次会议,
并确保将技术融入精神卫生服务研究。的
这项研究的方法学进步将使心理健康
研究人员和政策制定者更好地描述常规护理,
从临床试验中得出的结论
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHARON-LISE Teresa NORMAND其他文献
SHARON-LISE Teresa NORMAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHARON-LISE Teresa NORMAND', 18)}}的其他基金
Modern Analytics to Improve Quality & Outcome Assessments Following Congenital Heart Surgery
现代分析提高质量
- 批准号:
10419358 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
Modern Analytics to Improve Quality & Outcome Assessments Following Congenital Heart Surgery
现代分析提高质量
- 批准号:
10641880 - 财政年份:2022
- 资助金额:
$ 41.01万 - 项目类别:
Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
- 批准号:
9211341 - 财政年份:2015
- 资助金额:
$ 41.01万 - 项目类别:
Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
- 批准号:
8882683 - 财政年份:2015
- 资助金额:
$ 41.01万 - 项目类别:
Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
- 批准号:
9024579 - 财政年份:2015
- 资助金额:
$ 41.01万 - 项目类别:
MODELING TREATMENT USE & EFFECTIVENESS IN MENTAL ILLNESS
模拟治疗使用
- 批准号:
6287064 - 财政年份:2001
- 资助金额:
$ 41.01万 - 项目类别:
Modeling Treatment Use & Effectiveness In Mental Illness
建模治疗用途
- 批准号:
7258897 - 财政年份:2001
- 资助金额:
$ 41.01万 - 项目类别:
Modeling Treatment Use & Effectiveness In Mental Illness
建模治疗用途
- 批准号:
7121646 - 财政年份:2001
- 资助金额:
$ 41.01万 - 项目类别:
相似海外基金
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
A Controlled Study of Extended Cannabis Abstinence in Major Depression
重度抑郁症患者长期吸食大麻的对照研究
- 批准号:
478313 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Operating Grants
Longitudinal and genetic evaluation of type 2 diabetes and major depression
2 型糖尿病和重度抑郁症的纵向和遗传评估
- 批准号:
MR/X009815/1 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Research Grant
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Resistance Exercise to Treat Major Depression via Cerebrovascular Mechanisms: Confirming Efficacy and Informing Precision Medicine
通过脑血管机制进行抗阻运动治疗重度抑郁症:证实疗效并为精准医学提供信息
- 批准号:
10724799 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Research Project 2 - Genomic Approaches to Pollutome Effects on Risk of Major Depression in Hispanic Pedigrees
研究项目 2 - 污染组学方法对西班牙裔谱系中重度抑郁症风险的影响
- 批准号:
10749788 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
The impact of coach-guided risk communication on the risk of major depression: A randomized controlled trial
教练指导的风险沟通对重度抑郁症风险的影响:一项随机对照试验
- 批准号:
488636 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Operating Grants
Cross-Population Working Group on Genes and Environment in Major Depression (POP-GEM): Advancing the Understating of Etiology through Diversity
重度抑郁症基因与环境跨人群工作组 (POP-GEM):通过多样性促进对病因的理解
- 批准号:
10540797 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Global Deep Learning Initiative to Understand Outcomes in Major Depression
全球深度学习计划了解重度抑郁症的结果
- 批准号:
10735255 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:
Neuroinflammation as a Mechanism Linking Early Life Stress, Altered Functional Connectivity, and Anhedonia in Major Depression
神经炎症是一种与早期生活压力、功能连接改变和重度抑郁症快感缺失相关的机制
- 批准号:
10606174 - 财政年份:2023
- 资助金额:
$ 41.01万 - 项目类别:














{{item.name}}会员




