Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
基本信息
- 批准号:8882683
- 负责人:
- 金额:$ 55.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAreaBayesian MethodBig DataCardiovascular DiseasesCaringClinicalClinical TrialsCommunitiesComputer softwareComputerized Medical RecordDataDevelopmentEffectivenessEvaluationGoalsGrowthHealthHealth PolicyHealth ServicesHealthcareHeterogeneityInterventionInvestigationKnowledgeLibrariesLinkMalignant NeoplasmsMeasuresMedical DeviceMedical TechnologyMethodsModelingMovementObservational StudyOperative Surgical ProceduresPatientsPharmacologic SubstancePolicy MakingPopulationProcessRandomizedRegistriesResearchSelection BiasStatistical MethodsSubgroupSystems DevelopmentTreatment EffectivenessUncertaintyclinical practicecomparative effectivenessdata registryeffectiveness researchflexibilityhealth care deliveryimprovedinterdisciplinary collaborationinterestmethod developmentnovelnovel strategiesopen sourcepatient populationpublic health relevancerandomized trialsimulationsoundtooltreatment effectuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Comparative effectiveness research (CER) relies upon the analysis of a rapidly expanding universe of observational data made possible by the growing integration of health care delivery, the dissemination of electronic medical records systems, and the development of clinical registries data. These data present both extraordinary opportunities for research aimed at improving value in health care as well as new challenges for meaningful investigation. A critical barrier relates to the lack of sound statistical methods and tools that can address the multiple facets of estimating treatment effects in observational studies
when treatment effectiveness may vary across subpopulations and covariate information defining these subgroups is high dimensional and sometimes unmeasured. Aim 1 develops new Bayesian methods for causal inference in large observational data to 1) estimate average causal effects accounting for model uncertainty in the selection of measured confounders and 2) estimate average causal effects in sub-populations accounting for uncertainty in the selection of the subgroups. This newly proposed approach generalizes existing methods because it will not rely on the specification of a single model, but instead will estimate parameters by averaging across several models. Aim 2 develops new Bayesian methods for assessing treatment effects in the presence of unmeasured confounders that moderate treatment effects in large observational data. The new approach uses instrumental variables to 1) identify the distributions, rather than means, of essential causal parameters and 2) link causal parameters to subgroups by systematically relaxing selection bias assumptions. Aim 3 applies the new methods to observational studies to provide new and fully reproducible knowledge in the areas of medical devices, surgical procedures, and pharmaceutical treatments. Aim 4 develops flexible, efficient, robust, well documented, user-friendly R libraries and SAS macros, facilitatin dissemination of our newly developed methods. Our new methods, their applications to large administrative and clinical registry data, and their dissemination will allow the entire research community to address modern CER questions with the highest methodological rigor.
描述(由申请人提供):比较有效性研究(CER)依赖于对快速扩展的观察数据的分析,这些数据是由于医疗保健服务的日益整合、电子病历系统的传播和临床登记数据的开发而成为可能的。这些数据既为旨在提高医疗保健价值的研究提供了非凡的机会,也为有意义的调查带来了新的挑战。一个关键障碍是缺乏健全的统计方法和工具,无法解决观察性研究中估计治疗效果的多个方面
当治疗有效性可能在亚群之间变化时,定义这些亚群的协变量信息是高维的,有时无法测量。目标1开发了用于大规模观测数据因果推断的新贝叶斯方法,以1)估计平均因果效应,解释选择测量混杂因素时的模型不确定性,2)估计亚群中的平均因果效应,解释选择亚群时的不确定性。这种新提出的方法概括了现有的方法,因为它不依赖于单个模型的规格,而是通过对多个模型进行平均来估计参数。目标2:开发新的贝叶斯方法,用于在存在未测量的混杂因素的情况下评估治疗效果,这些混杂因素在大型观察数据中调节治疗效果。新方法使用工具变量来1)确定基本因果参数的分布,而不是平均值,2)通过系统地放松选择偏差假设将因果参数与亚组联系起来。目标3将新方法应用于观察性研究,以提供医疗器械,外科手术和药物治疗领域的新的和完全可重复的知识。目标4:开发灵活、高效、健壮、文档齐全、用户友好的R库和SAS宏,促进我们新开发方法的传播。我们的新方法,它们在大型管理和临床登记数据中的应用,以及它们的传播,将使整个研究界能够以最高的方法学严谨性来解决现代CER问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHARON-LISE Teresa NORMAND其他文献
SHARON-LISE Teresa NORMAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHARON-LISE Teresa NORMAND', 18)}}的其他基金
Modern Analytics to Improve Quality & Outcome Assessments Following Congenital Heart Surgery
现代分析提高质量
- 批准号:
10419358 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
Modern Analytics to Improve Quality & Outcome Assessments Following Congenital Heart Surgery
现代分析提高质量
- 批准号:
10641880 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
- 批准号:
9211341 - 财政年份:2015
- 资助金额:
$ 55.96万 - 项目类别:
Bayesian Methods for Comparative Effectiveness Research with Observational Data
使用观察数据进行比较有效性研究的贝叶斯方法
- 批准号:
9024579 - 财政年份:2015
- 资助金额:
$ 55.96万 - 项目类别:
MODELING TREATMENT USE & EFFECTIVENESS IN MENTAL ILLNESS
模拟治疗使用
- 批准号:
6287064 - 财政年份:2001
- 资助金额:
$ 55.96万 - 项目类别:
Modeling Treatment Use & Effectiveness In Mental Illness
建模治疗用途
- 批准号:
7258897 - 财政年份:2001
- 资助金额:
$ 55.96万 - 项目类别:
MODELING TREATMENT USE & EFFECTIVENESS IN MENTAL ILLNESS
模拟治疗使用
- 批准号:
6499366 - 财政年份:2001
- 资助金额:
$ 55.96万 - 项目类别:
Modeling Treatment Use & Effectiveness In Mental Illness
建模治疗用途
- 批准号:
6985034 - 财政年份:2001
- 资助金额:
$ 55.96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 55.96万 - 项目类别:
Research Grant