Single-Molecule Approaches to Chromatin Structure /Dynam
染色质结构/动态的单分子方法
基本信息
- 批准号:6559187
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Archaea DNA DNA methylation atomic force microscopy bacterial proteins biochemistry biomedical equipment biomedical equipment development cell component structure /function chromatin histones molecular dynamics nanotechnology nucleosomes posttranslational modifications protein isoforms protein structure function stoichiometry
项目摘要
Our research is investigating chromatin structure and function as revealed by single molecule approaches. Single molecule approaches (e.g. atomic force microscopy AFM, optical tweezers) can answer particular questions that are difficult (if not impossible) to answer by population-ensemble experiments (e.g. gel electrophoresis etc.). Our interests in chromatin are (i) linker and core histones (variants, stoichiometry) and their contributions to fiber structure, (ii) post-translational modifications of histones (acetylation, phosphorylation, ADP-ribosylation, etc.) affecting structure, (iii) effect of DNA methylation on fiber structure, and (iv) interactions of chromatin fibers or single nucleosomes reconstituted on specific DNA sequences with other macromolecular complexes involved in DNA functioning (e.g. polymerases, chromatin remodeling factors, etc.).
Subproject 1: AFM imaging and manipulations:
With AFM our approach is twofold: on one side, high-resolution imaging of protein/DNA complexes (chromatin fibers of various composition, stoichiometry and post-translational modifications), and, on the other side, direct manipulation of single chromatin fibers with the AFM tip to probe the forces holding the structure of the chromatin fiber together. Force is a factor in many processes involving chromatin and chromosome structural reorganizations during the life of any eukaryotic cell. Force may be needed to clear histones from the DNA for biological processes such as transcription, replication and repair. Force generation and application to biological structure is a major component of dynamic biological processes, but forces governing chromatin structure and function have not been experimentally approached up to now. Our studies of pulling short reconstituted chromatin fibers nonspecifically attached to the tip and surface lead us to conclude that we were measuring the force of adhesion of the nucleosomes to the glass substrate. To circumvent this experimental artifact, we are now tethering the DNA ends between the AFM tip and the surface, with the idea of directly reconstituting chromatin onto a single DNA molecule (similar to the optical tweezers experiments, see below).
Subproject 2: Force measurements with optical tweezers
Our interests in the effect of force applied to chromatin fibers has lead us to collaborate with researchers at the University of Twente (The Netherlands) on applying optical tweezers to chromatin fibers. With the optical tweezers we can probe the lower region of forces 1-150 picoNewtons (pN), whereas with the AFM we can probe forces above 100 pN. In these optical tweezers experiments, we first attached a piece of DNA between two beads, demonstrated that it was an intact single molecule of DNA that can undergo the well known B-DNA to S-DNA transition, and then assembled histones onto this single DNA molecule by injecting a Xenopus laevis egg nucleosome assembly extract into the liquid cell of the instrument. These kinds of experiments open a whole new approach because with the nuclear extract it is possible to assemble chromatin with various complements of histones (i.e., only core histone H3/H4 tetramers, fluorescently modified histones, with or without linker histone subtypes, etc.). We have found that our optical tweezers set-up is sensitive enough to detect the disruption of single nucleosomes among the ~240 nucleosomes assembled on the 48,502 bp of lambda DNA.
We have determined that a range of forces of 15 pN to 40 pN is sufficient to unravel a single nucleosome. The unraveling of an individual nucleosome results in a length increase of the chromatin fiber of ~65 nm. This length increase is on the order of the length of two wraps of DNA around the nucleosome core particle. We believe that our measurements are fundamental to understanding the dynamic changes in nucleosome structure as nucleosomes are formed and then disassembled to allow access of transcription, replication and repair machineries to the underlying DNA template.
Subproject 3: DNA methylation and chromatin structure
Methylation of certain bases is the sole post-synthetic modification in DNA. Methylation of cytosine takes place in CpG dinucleotides. Concentrations of methylatable CpGs form the so-called CpG islands; the methylation status of CpG islands in enhancers/promoters of genes determine the transcriptional activity of the gene (CpG islands downstream of initiation sites do not affect transcription). Since methylation of CpG islands in promoters blocks transcription, we have been investigating a possible methylation-dependent chromatin compaction. We are using both AFM imaging and biochemical approaches to study this issue. We found that chromatin fibers hypermethylated in vivo were more compact than fibers isolated from control fibers. Modeling studies suggest that more DNA is wrapped around nucleosomal particles in the methylated chromatin fibers than in the control fibers. In vitro studies point to a cooperation between CpG methylation and linker histone binding in the formation of more compacted fibers; DNA methylation or linker histone binding alone do not cause fiber compaction.
Subproject 4: Archael protein HMf (Histone from Methanothermus fervidus) has the same histone-fold structure as the eukaryal core histones although it lacks completely the post-translationally modified histone tails. We have investigated the ability of this protein to form chromatin fiber structure to gain insights into possible similarities and differences between eukaryal chromatin and its Archael counterpart. We have found that this protein can indeed be reconstituted onto DNA to form bona fide chromatin fibers as revealed by AFM and biochemical studies. Interestingly, the lessor stability of Archael mononucleosomes and short oligonucleosomes suggests that the post-translationally modifiable tails of the eukaryal histones lead to greater stability of eukaryal chromatin as well as serve to regulate accessibility to the underlying DNA template for DNA functioning.
Subproject 5: Magnetic tweezers manipulation of single chromatin fibers
We have developed a magnetic tweezers instrument to analyze single chromatin fibers in real time. In preliminary results, we have been able to manipulate a single DNA molecule and also to assemble the single DNA into chromatin using a purified system of nucleosome assembly protein 1 and core histones. With this system we should be able to study the effects of external force and torsion on a single chromatin fiber, and should get data that rivals the sensitivity of our recently published optical tweezers data.
Collaborators in alphabetical order:
Martin Bennink, Ph.D., Univ. of Twente, Enschede, The Netherlands
David Brown, Ph.D., University of Mississippi Medical Center, Jackson, Mississippi
Paola Caiafa, Ph.D., Univ. "La Sapienza", Rome, Italy
Paul Smith, ODS
Jordanka Zlatanova, Ph.D., Dr.Sc., Polytechnic University, Brooklyn, New York
我们的研究是通过单分子方法研究染色质的结构和功能。单分子方法(如原子力显微镜AFM,光学镊子)可以回答难以(如果不是不可能)通过种群集合实验(如凝胶电泳等)回答的特定问题。我们对染色质的兴趣是(i)连接体和核心组蛋白(变体,化学计量)及其对纤维结构的贡献,(ii)影响结构的组蛋白翻译后修饰(乙酰化,磷酸化,adp核糖基化等),(iii) DNA甲基化对纤维结构的影响,以及(iv)特定DNA序列上重组的染色质纤维或单个核小体与其他参与DNA功能的大分子复合物(例如聚合酶,染色质重塑因子等)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chromatin structure revisited.
- DOI:10.1615/critreveukargeneexpr.v9.i3-4.90
- 发表时间:1999
- 期刊:
- 影响因子:1.6
- 作者:J. Zlatanova;S. Leuba;K. Holde
- 通讯作者:J. Zlatanova;S. Leuba;K. Holde
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon L Hager其他文献
Gordon L Hager的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon L Hager', 18)}}的其他基金
相似国自然基金
替尼泊苷抑制APEX1驱动DNA损伤在治疗肺癌中的作用及机制研究
- 批准号:JCZRYB202500477
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HMGCL通过H3K27乙酰化增强RAD52依赖的DNA损伤修复促进宫颈癌放疗抵抗的机制研究
- 批准号:JCZRLH202500546
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于仿生非平衡态的DNA纳米机器构建及其对多种霉菌毒素高灵敏同步
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 DNA 编码分子库的新型蛋白抑制剂分子胶水活性评价与机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复制蛋白A小分子抑制剂-HAMNO调控DNA损伤修复的结构及功能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合金@硼烯的比率型折纸电化学芯片构建及其在多种循环肿瘤DNA的超灵敏检测
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NEDD4泛素化调控CREB/miR-132轴诱发精子DNA碎片化在肥胖不育中的作用及机制
- 批准号:QN25H200016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高强度DNA杂化纳米机器人在内体膜调控和核酸药物递送中的基础研究
- 批准号:HDMZ25H300006
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
PLOD2的DNA低甲基化模式驱动内质网与线粒体代谢串扰诱导免疫微环境重塑和化疗耐药
- 批准号:KLY25H160008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于内在抗炎和抗氧化功能的可注射 DNA 水凝胶高效负载牙髓干细胞促进脊髓损伤修复的作用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
stablishment of non-invasive DNA methylation panel for peritoneal metastasis of gastric cancer patients
胃癌腹膜转移非侵入性DNA甲基化检测试剂盒的建立
- 批准号:
23K08210 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next-generation epigenetic analysis: direct reading of DNA methylation
下一代表观遗传分析:直接读取 DNA 甲基化
- 批准号:
DP220102086 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
DNA methylation and effectors associated with lifestyle diseases study
DNA甲基化和与生活方式疾病相关的效应物研究
- 批准号:
23K16331 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of Molecular Mechanisms of Child Abuse Stress Focusing on DNA Methylation and Development and Application of Quantitative Methods
以DNA甲基化为重点的儿童虐待应激分子机制阐明及定量方法的发展与应用
- 批准号:
23K16378 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modular workflow for the community-led development of custom livestock DNA methylation arrays
用于社区主导的定制牲畜 DNA 甲基化阵列开发的模块化工作流程
- 批准号:
BB/W019051/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
DNA-methylation to improve conservation of TSD species
DNA 甲基化可改善 TSD 物种的保护
- 批准号:
NE/X012077/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding the full spectrum of epigenetic vulnerability in cancer through the delineation of DNA methylation function in gene 3' end
通过描绘基因 3 端 DNA 甲基化功能,全面了解癌症的表观遗传脆弱性
- 批准号:
10765365 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Sensitive periods for prenatal alcohol exposure: a longitudinal study of DNA methylation and subsequent mental health
产前酒精暴露的敏感期:DNA 甲基化和随后心理健康的纵向研究
- 批准号:
10573715 - 财政年份:2023
- 资助金额:
-- - 项目类别: