Tactile Feet and Online Learning for Robust Control of a Quadruped Robot in Challenging Terrain
触觉足和在线学习在具有挑战性的地形中实现四足机器人的鲁棒控制
基本信息
- 批准号:1951503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tactile sensing has been extensively explored in the domain of object manipulation and detection, especially with the TacTip tactile sensor, but very little has been done in the domain of tactile feet for walking robots. With feet there is a similar issue as in hands: by interacting with the environment the robot occludes the surface that needs quantifying (whether this be in texture, surface orientation, edge detection etc). Therefore the application of a tactile sensor, which directly measures the contacted surface, seems more appropriate than commonly used non-contact methods such as computer vision (CV), lidar or sonar which cannot sense the surface under contact. The addition of tactile feet may give a walking robot more reliable estimation of slip between the feet and floor, floor distance and orientation and identification of smooth/bumpy surfaces (for selection of stable footholds), all of which improve the success of a quadruped walking and/or running over uneven natural terrain. Most walking robots struggle to do this. Tactile feet pose additional challenges to those faced in tactile hands. The hardware must be capable of supporting the body weight and withstand the impact from walking/running and be resistant to unexpected objects encountered in natural terrain (e.g. sharp objects). The software must handle the greater distortion and noise of the sensor caused by the movements of the supported robot, which is inherently more complex and dynamic than the noise experienced in hands, and the feedback loop must be faster as walking or running require faster movements than with object grasping and manipulation. Additionally given the size and mobile nature of a walking robot, any software must either run on an onboard microcomputer, which restricts computational power, or there must be a high speed connection to an offboard computer which is fast enough to enable real time control of the robot. Additionally, as explored in the first year project, the use of online learning methods to learn the mapping between tactile data and useful control inputs could be a data efficient and robust way of training the robot. Offline methods tend to be extremely data intensive, needing data across all possible dimensions of variation, and cannot learn to adapt to novel inputs encountered during testing. Additionally the models are learnt for specific sensors which may break and need replacing at any time, and while replacement sensors will be similar there is enough difference that the same models cannot be used and all training must be repeated. The use of online learning solves these problems, introducing instead the challenge of creating comprehensive online data collection policies in order for the correct mappings to be learnt autonomously. A neat extension from the first year project, which explored data-efficient online sensor training and control in edge following tasks, is the development of a beam-balancing robot. Fitting a quadruped with tactile feet would enable it to walk along a randomly curving beam only slightly wider than its leg span, without falling. With tactile sensing it is possible to identify an edge and how far along the sensor the edge is (as explored with a single sensor in the first year project). This is in contrast to a robot without tactile sensing which would be unable to tell if the foot is fully on the beam or not - the use of onboard cameras watching the feet would be obscured from seeing directly under the feet by the feet or the terrain (e.g. grass) so may be unreliable. Using tactile sensors in this way would allow the robot to move the feet back onto the beam and prevent falling (in a more complex system using maps the locations of the edge could be noted to aid future planning of stable courses).
触觉传感在物体操纵和检测领域得到了广泛的研究,特别是TacTip触觉传感器,但在步行机器人的触觉脚领域却做得很少。对于脚,存在与手类似的问题:通过与环境交互,机器人遮挡需要量化的表面(无论是纹理,表面方向,边缘检测等)。因此,直接测量接触表面的触觉传感器的应用似乎比通常使用的非接触方法(例如计算机视觉(CV)、激光雷达或声纳)更合适,这些方法不能感测接触下的表面。触觉脚的添加可以给予行走机器人对脚和地板之间的滑动、地板距离和取向的更可靠的估计以及对光滑/颠簸表面的识别(用于选择稳定的立足点),所有这些都提高了四足动物在不平坦的自然地形上行走和/或跑步的成功率。大多数步行机器人都很难做到这一点。有触觉的脚对那些有触觉的手提出了额外的挑战。硬件必须能够支撑体重,承受行走/跑步的冲击,并能抵抗自然地形中遇到的意外物体(例如尖锐物体)。软件必须处理由所支持的机器人的运动引起的传感器的更大的失真和噪声,其本质上比手中经历的噪声更复杂和动态,并且反馈回路必须更快,因为步行或跑步需要比物体抓取和操纵更快的运动。另外,给定步行机器人的尺寸和移动的性质,任何软件必须在限制计算能力的机载微型计算机上运行,或者必须存在到足够快以实现机器人的真实的时间控制的非机载计算机的高速连接。此外,正如第一年项目中所探索的那样,使用在线学习方法来学习触觉数据和有用的控制输入之间的映射可能是训练机器人的一种数据高效和鲁棒的方法。离线方法往往是数据密集型的,需要所有可能的变化维度的数据,并且无法学习适应测试期间遇到的新输入。此外,模型是针对可能损坏并需要随时更换的特定传感器学习的,虽然更换的传感器将是相似的,但存在足够的差异,无法使用相同的模型,并且必须重复所有训练。在线学习的使用解决了这些问题,而是引入了创建全面的在线数据收集策略的挑战,以便自主学习正确的映射。从第一年的项目,探索数据高效的在线传感器训练和控制边缘跟踪任务,一个整洁的扩展是梁平衡机器人的开发。给四足动物装上有触觉的脚,就能让它沿着一根比它腿的跨度稍宽的随机弯曲的横梁行走,而不会摔倒。通过触觉传感,可以识别边缘以及边缘沿传感器的沿着(如第一年项目中使用单个传感器所探索的)。这与不具有触觉感测的机器人形成对比,触觉感测将无法判断脚是否完全在梁上-使用机载摄像机观察脚将被脚或地形(例如草地)遮挡而无法直接看到脚下方,因此可能不可靠。以这种方式使用触觉传感器将允许机器人将脚移回梁上并防止跌倒(在使用地图的更复杂的系统中,可以注意到边缘的位置,以帮助未来规划稳定的课程)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
STTR Phase I: A Novel Prescription Process that Customizes Prosthetic Feet for Individual Patients
STTR 第一阶段:为个体患者定制假足的新颖处方流程
- 批准号:
2233114 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Doctoral Dissertation Research: The shape of hands and feet and the transition to upright walking
博士论文研究:手脚的形状以及直立行走的过渡
- 批准号:
2316552 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Topic 447: Development and testing of a non-invasive cryo-device to prevent chemotherapy-induced peripheral neuropathy in hands and feet of cancer patients receiving Taxol for breast cancer.
主题 447:开发和测试非侵入性冷冻装置,以预防接受紫杉醇治疗乳腺癌的癌症患者化疗引起的手脚周围神经病变。
- 批准号:
10928476 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Digital Health: 'Socksess' - Smart Sensing Socks For Monitoring Diabetic Feet And Preventing Ulceration
数字健康:“Socksess”——用于监测糖尿病足和预防溃疡的智能传感袜子
- 批准号:
EP/X001059/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
How do the rocks below our feet affect the high voltage power grid? - Making a new 3-D electrical conductivity model of the British Isles based on mag
我们脚下的岩石如何影响高压电网?
- 批准号:
2613615 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
GP-IN: Getting your feet wet: Advancing geoscience education using water-based field experiences
GP-IN:入门:利用水基现场经验推进地球科学教育
- 批准号:
2119992 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
The mysterious microbial ecosystem beneath our feet: Unravelling groundwater microbiology
我们脚下神秘的微生物生态系统:揭开地下水微生物学的神秘面纱
- 批准号:
2598254 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
The invention of new reconstructive indices to reconstruct the climbing ability and feet posture in extinct mammals
发明新的重建指数来重建已灭绝哺乳动物的攀爬能力和足部姿势
- 批准号:
21J14927 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Robust phase-based control of prosthetic feet and biologically inspired joint coupling
假足的鲁棒相位控制和仿生关节耦合
- 批准号:
394182789 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Soil macronutrient cycles beneath our feet: predicting how soil carbon and nitrogen manipulation regulates phosphorus cycling for environmental benefi
我们脚下的土壤常量养分循环:预测土壤碳和氮的操纵如何调节磷循环以实现环境效益
- 批准号:
1946135 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship