CRCNS:Mechanisms of Axonal Gradient Detection

CRCNS:轴突梯度检测机制

基本信息

  • 批准号:
    6641501
  • 负责人:
  • 金额:
    $ 23.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-30 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Correct brain function requires correct brain wiring. An important step in the establishment of appropriate connectivity is the guidance of axons over long distances in the developing brain to find their correct targets. A crucial type of guidance cue axons use is concentration gradients of attractive or repellent factors. Over the past decade many new molecules have been discovered that guide axons in this way. However, as yet we still have very little understanding of the precise mechanisms by which axons detect and respond to gradients. A better understanding of these mechanisms would enable us to understand better (1) how the nervous system is normally constructed, (2) why axons sometimes mistarget during development, (3) the effect of gene deletions and mutations on wiring, and (4) how to encourage axonal regeneration to appropriate targets after injury. The goal of this project is to develop a mechanistic understanding of axonal behavior in gradients by building computational models of gradient detection and directed movement for axons. Two types of models will be investigated. The first type is based on the idea that gradient detection is limited by inevitable stochastic noise in the receptor binding process. These models assume a small, spherical sensing device, and make predictions about the minimum detectable gradient steepness that such sensing devices can detect. The second type of model addresses the unique role that filopodia play in axonal gradient sensing and movement. The model is based on the idea that filopodia act as somewhat independent sensing devices, and it is their combined dynamics that determines the threshold for gradient detection and the trajectories that axons follow. A crucial component of the project is that the computational modeling will be directly tested and constrained using a new, quantitative experimental assay the investigators have recently developed. The assay allows stable molecular gradients of precisely controlled shape to be established in a collagen gel. The system used will be the guidance of dorsal root ganglion axons by gradients of Nerve Growth Factor (NG). Exponentially-shaped gradients of varying steepness of NG will be used to determine the minimum gradient steepness axons can detect as a function of absolute concentration, and the trajectories of axons in these gradients will be quantitatively analyzed.
描述(由申请人提供):正确的大脑功能需要正确的大脑连接。建立适当连接的一个重要步骤是在发育中的大脑中长距离引导轴突找到正确的目标。引导提示轴突使用的一个关键类型是吸引或排斥因子的浓度梯度。在过去的十年中,人们发现了许多以这种方式引导轴突的新分子。然而,到目前为止,我们对轴突检测和响应梯度的精确机制仍然知之甚少。更好地理解这些机制将使我们能够更好地理解(1)神经系统是如何正常构建的,(2)为什么轴突有时在发育过程中定位错误,(3)基因删除和突变对连线的影响,以及(4)如何鼓励损伤后轴突再生到适当的目标。该项目的目标是通过建立轴突梯度检测和定向运动的计算模型来发展对梯度中轴突行为的机械理解。将研究两种类型的模型。第一种类型基于这样的想法:梯度检测受到受体结合过程中不可避免的随机噪声的限制。这些模型假设一个小型球形传感设备,并对此类传感设备可以检测到的最小可检测梯度陡度进行预测。第二种类型的模型解决了丝状伪足在轴突梯度感知和运动中发挥的独特作用。该模型基于这样的想法:丝状伪足在某种程度上充当独立的传感设备,它们的组合动力学决定了梯度检测的阈值和轴突遵循的轨迹。该项目的一个关键组成部分是,将使用研究人员最近开发的新的定量实验测定法来直接测试和约束计算模型。该测定允许在胶原凝胶中建立形状精确控制的稳定分子梯度。所使用的系统将通过神经生长因子(NG)的梯度引导背根神经节轴突。 NG 的不同陡度的指数形梯度将用于确定轴突可以检测到的最小梯度陡度作为绝对浓度的函数,并且将定量分析这些梯度中轴突的轨迹。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GEOFFREY J GOODHILL其他文献

GEOFFREY J GOODHILL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GEOFFREY J GOODHILL', 18)}}的其他基金

Whole-Brain Functional Imaging and Analysis of Zebrafish Sleep
斑马鱼睡眠的全脑功能成像和分析
  • 批准号:
    10772327
  • 财政年份:
    2022
  • 资助金额:
    $ 23.7万
  • 项目类别:
Whole-Brain Functional Imaging and Analysis of Zebrafish Sleep
斑马鱼睡眠的全脑功能成像和分析
  • 批准号:
    10430595
  • 财政年份:
    2022
  • 资助金额:
    $ 23.7万
  • 项目类别:
Mechanisms of retinotectal map development
视网膜顶盖图发育机制
  • 批准号:
    6596493
  • 财政年份:
    2003
  • 资助金额:
    $ 23.7万
  • 项目类别:
Mechanisms of retinotectal map development
视网膜顶盖图发育机制
  • 批准号:
    6706971
  • 财政年份:
    2003
  • 资助金额:
    $ 23.7万
  • 项目类别:
CRCNS:Mechanisms of Axonal Gradient Detection
CRCNS:轴突梯度检测机制
  • 批准号:
    6796554
  • 财政年份:
    2002
  • 资助金额:
    $ 23.7万
  • 项目类别:
CRCNS:Mechanisms of Axonal Gradient Detection
CRCNS:轴突梯度检测机制
  • 批准号:
    6666807
  • 财政年份:
    2002
  • 资助金额:
    $ 23.7万
  • 项目类别:
PRECISELY CONTROLLED GRADIENTS FOR AXON GUIDANCE
精确控制轴突引导的梯度
  • 批准号:
    6351894
  • 财政年份:
    2000
  • 资助金额:
    $ 23.7万
  • 项目类别:
PRECISELY CONTROLLED GRADIENTS FOR AXON GUIDANCE
精确控制轴突引导的梯度
  • 批准号:
    6028296
  • 财政年份:
    2000
  • 资助金额:
    $ 23.7万
  • 项目类别:
THE DEVELOPMENT & STRUCTURE OF VISUAL CORTICAL MAPS
发展历程
  • 批准号:
    6524967
  • 财政年份:
    1999
  • 资助金额:
    $ 23.7万
  • 项目类别:
THE DEVELOPMENT & STRUCTURE OF VISUAL CORTICAL MAPS
发展历程
  • 批准号:
    6384808
  • 财政年份:
    1999
  • 资助金额:
    $ 23.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了