Big-data analysis tools for bridging the gap between omics and earth system science
用于弥合组学和地球系统科学之间差距的大数据分析工具
基本信息
- 批准号:2087766
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The future of ocean science lies in the collection and analysis of big-data coming from new technologies such as gliders, satellites and high-throughput sequencing. This presents new challenges both in terms of the mathematical and computational techniques that we need to interrogate the huge amount of data being generated, as well as the models required to allow us to bridge the gap between disparate datasets. An important example of this challenge is the integration of data sets collected for marine microbes. Data sets range right through sequencing of metagenomes/transcriptomes of communities, measurements of cell sizes and distributions, to glider-based measurements of temperature, salinity, and nutrients in the environments which the microbes inhabit. The aim of this project is to develop new big-data analysis algorithms and tools to interrogate, merge and integrate these diverse datasets. To do this, we will employ and develop cutting-edge techniques in bioinformatics and data science. Our new tools will allow researchers to extract patterns hidden in their data, so as to answer important questions such as how in situ microbial diversity is related to environmental factors, and which genes and species to target in terms of their function (e.g. trace-gas production) and ecological role (e.g. invasive species).In a current NEXUSS PhD project, we are adapting Oxford nanopore-sequencing technology to be used aboard ice-breakers. We have established a protocol for onboard and in situ sequencing of polar microbes and expect to have sequencing data from single isolates and mixed (mock) communities grown in controlled environmental conditions by autumn 2018. Annual Antartic expeditions are then planned using the new technology starting in early 2019 including MOSAiC, a year-round expedition onboard an icebreaker in 2020 which will collect data using various autonomous observing systems such as gliders. All of these activities will result in a huge array of interrelated sequencing and environmental data sets. However, the bioinformatics and data integration tools needed to analyse these data are lagging far behind both in terms of speed and ability to integrate the data. To address this challenge, we will first develop new bioinformatics tools and algorithms allowing us to fully harness the Nanopore technology, devising new algorithms for quickly assessing diversity and putative gene functions in sequencing data. Building on this, we will employ data science techniques such as data-warehousing and machine learning to design software allowing us and other researchers to merge the data so as to discover salient patterns in complex marine microbe datasets.The NEXUSS CDT provides state-of-the-art, highly experiential training in the application and development of cutting-edge Smart and Autonomous Observing Systems for the environmental sciences, alongside comprehensive personal and professional development. There will be extensive opportunities for students to expand their multi-disciplinary outlook through interactions with a wide network of academic, research and industrial / government / policy partners. The student will be registered at The University of East Anglia. Specific training will include: data science, machine learning, software development, bioinformatics, programming, sequence analysis, polar microbes, and molecular biology.
海洋科学的未来在于收集和分析来自滑翔机、卫星和高通量测序等新技术的大数据。这在数学和计算技术方面提出了新的挑战,我们需要询问正在生成的大量数据,以及允许我们弥合不同数据集之间的差距所需的模型。这一挑战的一个重要例子是整合收集的海洋微生物数据集。数据集的范围从群落的宏基因组/转录组的测序,细胞大小和分布的测量,到基于滑翔机的温度,盐度和微生物栖息环境中的营养物质的测量。该项目的目的是开发新的大数据分析算法和工具,以询问,合并和整合这些不同的数据集。为此,我们将采用和开发生物信息学和数据科学的尖端技术。我们的新工具将使研究人员能够提取隐藏在数据中的模式,以回答重要的问题,例如原位微生物多样性如何与环境因素相关,以及在功能方面针对哪些基因和物种(如微量气体生产)和生态作用在目前的NEXUSS博士项目中,我们正在调整牛津纳米孔测序技术,以用于破冰船上。我们已经建立了极地微生物的机载和原位测序协议,并预计到2018年秋季将获得在受控环境条件下生长的单一分离株和混合(模拟)群落的测序数据。然后计划从2019年初开始使用新技术进行年度南极探险,包括MOSAiC,这是一项在2020年在破冰船上进行的全年探险,将使用各种自主观测系统(如滑翔机)收集数据。所有这些活动将产生大量相互关联的测序和环境数据集。然而,分析这些数据所需的生物信息学和数据整合工具在整合数据的速度和能力方面都远远落后。为了应对这一挑战,我们将首先开发新的生物信息学工具和算法,使我们能够充分利用纳米孔技术,设计新的算法来快速评估测序数据中的多样性和推定基因功能。在此基础上,我们将采用数据仓库和机器学习等数据科学技术来设计软件,使我们和其他研究人员能够合并数据,从而发现复杂海洋微生物数据集中的显著模式。NEXUSS CDT提供最先进的,高度经验性的培训,用于环境科学的尖端智能和自主观测系统的应用和开发,以及全面的个人和专业发展。学生将有广泛的机会,通过与学术,研究和工业/政府/政策合作伙伴的广泛网络的互动,扩大他们的多学科视野。该学生将在东安格利亚大学注册。具体培训将包括:数据科学、机器学习、软件开发、生物信息学、编程、序列分析、极地微生物和分子生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Deep-IRT for educational big data analysis
用于教育大数据分析的 Deep-IRT 开发
- 批准号:
22KJ1368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
- 批准号:
10714466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
-- - 项目类别:
RCN-UBE: Sustainable, nationwide network to promote reproducible big-data analysis in biology programs within community colleges and minority-serving institutions
RCN-UBE:可持续的全国性网络,旨在促进社区大学和少数族裔服务机构内生物学项目的可重复大数据分析
- 批准号:
2316223 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Impact of Medicare on Individual Longevity: Evidence from Medicare Introduction Using Big Data
医疗保险对个人寿命的影响:使用大数据引入医疗保险的证据
- 批准号:
10575297 - 财政年份:2023
- 资助金额:
-- - 项目类别:
International Joint Research on Seismological Big Data Analysis Techniques Using Artificial Intelligence
人工智能地震大数据分析技术国际联合研究
- 批准号:
23KK0181 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)