Multi-material 3D printed thermoplastic morphing aircraft skins: manufacturing, testing, analysis, and design space exploration

多材料 3D 打印热塑性变形飞机蒙皮:制造、测试、分析和设计空间探索

基本信息

  • 批准号:
    2096010
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

To lead the aerospace industry into a more sustainable future, greenhouse gas emissions and noise need to be reduced and aircraft manufactured from recyclable materials. Morphing wings are a promising solution to make wings aerodynamically more efficient. They allow aircraft to continuously change their shape to adapt to changing operating conditions - reducing drag and therefore fuel burned. In order to achieve these radical changes in shape in a smooth and continuous manner, morphing wings require new materials and structural design philosophies that allow for flexibility and compliance. In particular, the skins covering these devices must be flexible in the morphing direction to keep the actuation forces low while also being stiff in the out-of-plane direction to resist aerodynamic loading. Research has shown that the conflicting material properties for morphing skins can be achieved by combining a flexible membrane with a core structure which is made from a much stiffer material taking advantage of the effect of the second moment of area, effectively generating a flexible sandwich panel. Thus far the main research effort has been focused on core structures and the underlaying and load carrying morphing mechanism rather than the entire aerodynamic morphing skin. This project will explore novel methods to develop morphing skins, taking into account the underlaying morphing technology and as well as factors such as various loading cases and aerodynamic performance, allowing the skins mechanical properties to be tailored to the specific application. Conventional core materials used in aerospace, such as the honeycomb based on a 2.5-dimensional geometry, have primarily been developed with the geometry due to the ease of manufacturing. Additive manufacturing will provide a new freedom of design where cores can be tailored to the specific requirement in the 3rd dimension. This allows for example the core member thickness to be varied through the height of the part. Using multi material additive manufacturing materials with a lower stiffness to be utilised in areas where bending is preferred and stiffer materials where rigidity is required. The multi material 3D printing has also shown that the core can be printed directly onto the outer skin membrane, where the membrane can have a variable thickness. This allows the skins to be manufactured in a single process, providing a perfect adhesion between the skin and the core. The materials used in this research are different formulations of Thermoplastic Polyurethanes which are optimised for additive manufacturing. Using thermoplastic elastomers has various advantages that makes them more sustainable than thermosets used in aircraft manufacturing. A component made from thermoplastics can be repaired in service using thermal and chemical welding, it is less likely to get damaged in service and when at the end-of-life it can relatively easily be recycled by melting the polymer.This morphing skin concept has its significant scientific complexity. The proposed morphing skins are made from thermoplastic elastomers which have a highly non-linear behaviour when strained. Furthermore, the core structures themselves when subjected to a large in-plane deformation show a non-linear behaviour. Current models described in literature only hold true for relatively small displacements, but morphing works best with larger change in shape. In this work we aim to capture the complex interaction between the flexible core and skin membrane to develop analytical and numerical methods to determine their mechanical properties, in the in-plane as well as out-of-plane direction. These models can in return be utilised to design and optimise bespoke skin solutions for a variety of different morphing applications.
为了引领航空航天业走向更加可持续的未来,需要减少温室气体排放和噪音,并使用可回收材料制造飞机。变形机翼是一种很有前途的解决方案,可以提高机翼的空气动力学效率。它们允许飞机不断改变形状以适应不断变化的操作条件,从而减少阻力,从而减少燃料消耗。为了以平滑和连续的方式实现这些彻底的形状变化,变形机翼需要新的材料和结构设计理念,以允许灵活性和遵从性。特别是,覆盖这些设备的外皮必须在变形方向上具有柔性,以保持低驱动力,同时在面外方向上也必须具有刚性,以抵抗气动载荷。研究表明,可以通过将柔性薄膜与利用二次面积矩效应的更硬材料制成的核心结构相结合,有效地产生柔性夹层板,从而实现变形皮肤的材料特性冲突。到目前为止,主要的研究工作都集中在核心结构、底层和承载变形机理上,而不是整个气动变形表皮。该项目将探索开发变形蒙皮的新方法,考虑到底层的变形技术,以及各种负载情况和空气动力学性能等因素,使蒙皮的机械性能能够根据具体应用进行定制。航空航天中使用的传统核心材料,如基于2.5维几何形状的蜂窝,由于易于制造,主要是与几何形状一起开发的。增材制造将提供一种新的设计自由度,其中核心可以根据第三维度的特定要求进行定制。这允许例如核心成员的厚度通过部分的高度变化。使用具有较低刚度的多材料增材制造材料用于首选弯曲的区域和需要刚性的较硬材料。多材料3D打印还表明,核心可以直接打印到外层皮肤膜上,其中膜可以具有可变厚度。这使得外皮可以在一个单一的过程中制造,在外皮和核心之间提供完美的附着力。本研究中使用的材料是针对增材制造优化的热塑性聚氨酯的不同配方。使用热塑性弹性体具有各种优势,使其比飞机制造中使用的热固性弹性体更具可持续性。由热塑性塑料制成的部件可以在使用中使用热焊接和化学焊接进行修复,在使用中不太可能损坏,并且在使用寿命结束时,通过熔化聚合物可以相对容易地回收利用。这种变形皮肤的概念有其显著的科学复杂性。所提出的变形皮肤由热塑性弹性体制成,该弹性体在拉伸时具有高度非线性行为。此外,当受到较大的面内变形时,核心结构本身表现出非线性行为。目前文献中描述的模型只适用于相对较小的位移,但变形在较大的形状变化中效果最好。在这项工作中,我们的目标是捕捉柔性核心和皮肤膜之间复杂的相互作用,以开发分析和数值方法来确定它们在平面内和面外方向的机械性能。这些模型可以反过来用于设计和优化各种不同变形应用的定制皮肤解决方案。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design principles for geometrically anisotropic thermoplastic rubber morphing aircraft skins
Design, Manufacture and Wind Tunnel Test of a Modular FishBAC Wing with Novel 3D Printed Skins
采用新型 3D 打印蒙皮的模块化 FishBAC 机翼的设计、制造和风洞测试
  • DOI:
    10.3390/app12020652
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rivero A
  • 通讯作者:
    Rivero A
Manufacturing and characterisation of 3D printed thermoplastic morphing skins
  • DOI:
    10.1088/1361-665x/ac71ed
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Heeb, Rafael M.;Dicker, Michael;Woods, Benjamin K. S.
  • 通讯作者:
    Woods, Benjamin K. S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于物质流分析的中国石油资源流动过程及碳效应研究
  • 批准号:
    41101116
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
松嫩草地土壤动物多样性及其在凋落物分解中作用和物质能量收支研究
  • 批准号:
    40871120
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
机翼机身轻质点阵材料的设计分析
  • 批准号:
    90305015
  • 批准年份:
    2003
  • 资助金额:
    40.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

MRI: Track 1 Acquisition of Multi-Material 3D Printer for Additively Manufactured Electronics to Enable Interdisciplinary Research and Education
MRI:第一轨道采购用于增材制造电子产品的多材料 3D 打印机,以实现跨学科研究和教育
  • 批准号:
    2320798
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi material 3D Printing
多材料3D打印
  • 批准号:
    IM230100090
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Mid-Career Industry Fellowships
MADE-3D: Multi-Material Design using 3D Printing
MADE-3D:使用 3D 打印的多材料设计
  • 批准号:
    10065559
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
3D printing and properties of multi-material structures and devices
3D 打印以及多材料结构和设备的特性
  • 批准号:
    2731024
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Multi-material topology optimization for anti-vibration rubbers considering 3D-printing functionally graded materials
考虑3D打印功能梯度材料的减振橡胶多材料拓扑优化
  • 批准号:
    22H00226
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
  • 批准号:
    2229036
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Digital Twin Application - Design and Development of Multi-material 3D Printing System
数字孪生应用——多材料3D打印系统设计与开发
  • 批准号:
    563329-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Multi-material 3D printing of reservoir rock analogues for sustainable energy recovery and storage
储层岩石类似物的多材料 3D 打印,用于可持续能源回收和存储
  • 批准号:
    RTI-2021-00073
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Multi-material stereolithographic 3D-printing for prototyping Tissue Chips
用于制作组织芯片原型的多材料立体光刻 3D 打印
  • 批准号:
    10265548
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Electric Vehicle Battery Manufacturing with Novel Multi-Material 3D Printer - BattMan 3D
使用新型多材料 3D 打印机制造电动汽车电池 - BattMan 3D
  • 批准号:
    52879
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Study
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了