3D Printing and Nanofabrication of Multifunctional Scaffold Materials for Biomedical Applications

用于生物医学应用的多功能支架材料的 3D 打印和纳米制造

基本信息

  • 批准号:
    2105863
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Millions of musculoskeletal tissue graft procedures are performed worldwide on an annual basis to treat traumatic injuries, degenerative diseases, and tumour resections. Tissue harvested from the patient (autogenic) are the preferred tissue grafting materials, despite drawbacks and potential complications, because engineered materials have been unable to meet the diverse range of multifunctional requirements, which includes biocompatibility, biodegradation, mechanical properties, and porous structure. Nanofabrication techniques enable material systems composed of precise combinations of nano-scale building blocks, including individual molecules and nano-particles. These techniques have been utilised to produce nano-structured material systems with a range of unique properties and functions, including high strength and stiffness, biocompatibility, biodegradability, and delivery/release of therapeutic drugs. Combining nanofabrication with 3D-printing allows control over micro-scale porous structure, in addition to nano-scale control over structure and composition, and helps scale-up nano-scale processes for the production of macro-scale bulk materials. Nanofabrication of polymer-clay nanocomposites onto porous open-cell foams has enabled the production of macro-scale nanocomposite porous materials with controlled stiffness and porosity spanning remarkable ranges from those of soft elastomer foams to very stiff, lightweight honeycomb and lattice materials [1]. Tailoring the material composition at the surface has enhanced the biocompatibility of these materials for application as engineered tissue scaffold materials [2]. Further work is needed to combine controlled mechanical properties, porosity, and biocompatibility with additional functionalization including biodegradability, and therapeutic drug-delivery. Achieving these properties and functionalities will help address the major unmet need for engineered tissue scaffold materials as replacements for existing treatment strategies using autogenous grafts, which are limited in supply and efficacy.Nanocomposite thin-films will be produced using an aqueous-based nanofabrication technique. Material systems targeting load-bearing functionality will be mechanically characterized, while materials targeting biodegradability will be characterized in terms of in vitro degradation. Hybrid material systems combining load-bearing and biodegradable functionalities will be designed and characterized as functions of varying composition and nano-structure. Porous nanocomposites will be produced via nanofabrication onto 3D-printed scaffolds with controlled initial pore structure. The porous structure, mechanical properties, and degradation characteristics of porous nanocomposites will be assessed against requirements for engineered musculoskeletal tissue scaffolds. The integration of material systems for therapeutic drug-delivery and enhanced biocompatibility will also be explored via local and international collaborations with biomedical researchers.
全世界每年进行数百万次肌肉骨骼组织移植手术,以治疗创伤性损伤、退行性疾病和肿瘤切除。尽管存在缺点和潜在的并发症,但从患者采集的组织(自体)是优选的组织移植材料,因为工程材料无法满足多种多功能要求,包括生物相容性、生物降解、机械性能和多孔结构。纳米纤维技术使材料系统能够由纳米级构建块的精确组合组成,包括单个分子和纳米颗粒。这些技术已被用于生产具有一系列独特性能和功能的纳米结构材料系统,包括高强度和刚度、生物相容性、生物降解性和治疗药物的递送/释放。将纳米纤维与3D打印相结合,除了对结构和组成进行纳米级控制之外,还可以控制微米级多孔结构,并有助于扩大用于生产宏观级散装材料的纳米级工艺。聚合物-粘土纳米复合材料在多孔开孔泡沫上的纳米纤维化使得能够生产宏观尺度的纳米复合多孔材料,其具有受控的刚度和孔隙率,跨越从软弹性体泡沫到非常硬的轻质蜂窝和晶格材料的显著范围[1]。定制表面的材料组成增强了这些材料作为工程化组织支架材料的生物相容性[2]。需要进一步的工作来将联合收割机控制的机械性能、多孔性和生物相容性与包括生物降解性和治疗药物递送的附加功能化结合。实现这些特性和功能将有助于解决工程组织支架材料作为现有治疗策略的替代品的主要未满足的需求,使用自体移植物,其供应和功效有限。纳米复合材料薄膜将使用水基纳米纤维技术生产。针对承载功能的材料系统将进行机械表征,而针对生物降解性的材料将进行体外降解表征。混合材料系统结合承载和生物降解功能将被设计和表征为不同的组成和纳米结构的功能。多孔纳米复合材料将通过纳米纤维在具有受控初始孔结构的3D打印支架上生产。多孔纳米复合材料的多孔结构,力学性能和降解特性将根据工程化肌肉骨骼组织支架的要求进行评估。还将通过与生物医学研究人员的本地和国际合作,探索用于治疗药物输送和增强生物相容性的材料系统的整合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
  • 批准号:
    2753054
  • 财政年份:
    2026
  • 资助金额:
    --
  • 项目类别:
    Studentship
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
  • 批准号:
    DP240101708
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
  • 批准号:
    2340414
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
  • 批准号:
    2412186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Recycling of platinum electrodes demonstrating particulate electrochemical printing - PEP 3d Pt
铂电极的回收展示了颗粒电化学印刷 - PEP 3d Pt
  • 批准号:
    2905755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
FMSG: Cyber: 3D Printing of Holographic Optical Processors
FMSG:网络:全息光学处理器的 3D 打印
  • 批准号:
    2328362
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了