(AFS) Developing a deep learning-based 3D imaging platform for tracking and modelling whole plant growth responses to environmental &chemical stresses
(AFS) 开发基于深度学习的 3D 成像平台,用于跟踪和建模整个植物生长对环境的响应
基本信息
- 批准号:2111835
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an urgent need for novel technologies that allow scientists and agronomists to monitor and predict the combined impacts of environmental stresses (abiotic and biotic) on plant growth and performance. The capacity to track relevant growth traits atthe whole-plant level is significantly increased if 3D data is available, which can be used to understand and model the response of a given genotype to a given environment. Recently, photometric stereo (PS) 3D imaging has been shown to be able to resolve changes in leaf surface textures and morphology induced by different stresses that are not detectable using 2D imaging methods (ongoing BBSRC funded work in SBS and CMV). PS offers unprecedented spatial resolution for 3D data and is inherently low-cost. Working in amultidisciplinary environment, the candidate will develop deep-learning approaches to automate the extraction of trait characteristics from PS data and build a unique, field-level image analysis platform to accurately determine the impact of different chemical treatments on different genotypes based on their growth environment.Project plan.Methods will be validated initially in the model species Arabidopsis thaliana, after which the candidate will investigate a range of larger grass and broadleaf plants. A specific focus will be on wheat cultivars under glasshouse and field conditions. The Williams' group (GeoSciences) will provide support for conducting wheat field analyses from the BBSRC-NERC funded SARIC project BB/P004628/1. The availability of chemically treated and untreated wheat field trials will facilitate field testing of PS systems, and PS data will be complemented by available drone-based image datasets (RGB, thermal and multispectral) where "structure from motion" approaches have been used to reveal 3D crop canopy traits.The candidate will investigate if combining trait data from these different datasets will help to improve robustness in detecting key response functions, which then could be added to available crop models to better predict the sensitivity of wheat to combined stresses and optimise the timing of chemical treatments.Intended impact.The PS system will be developed as a high-throughput tool to analyse the impact of different chemical treatments on Arabidopsis grown in differing temperature, light or droughted environments. Work in Arabidopsis will also allow investigation of treatments on vulnerable genotypes known to affect growth. Subsequent work in wheat trails will test the real-world capacity of the PS system to provide farmers with useful data, such as early stage detection of stress and/or disease and vulnerability of particular genotypes, and improving the efficiency and sustainability of chemical treatment applications.
迫切需要新的技术,使科学家和农学家能够监测和预测环境胁迫(非生物和生物)对植物生长和性能的综合影响。如果3D数据可用,则在整个植物水平上跟踪相关生长性状的能力显着增加,该数据可用于理解和模拟给定基因型对给定环境的响应。最近,光度立体(PS)3D成像已被证明能够解决不同的压力,不能检测使用2D成像方法(正在进行的BBSRC资助的SBS和CMV的工作)引起的叶表面纹理和形态的变化。PS为3D数据提供了前所未有的空间分辨率,并且成本低。在多学科环境中工作,候选人将开发深度学习方法,以自动从PS数据中提取性状特征,并建立一个独特的田间图像分析平台,以准确确定不同化学处理对不同基因型的影响,基于其生长环境。项目计划。方法将在模式物种拟南芥中进行初步验证,之后,候选人将调查一系列较大的草和阔叶植物。一个具体的重点将是在温室和田间条件下的小麦品种。威廉姆斯小组(地球科学)将为BBSRC-NERC资助的SARIC项目BB/P004628/1的麦田分析提供支持。化学处理和未处理麦田试验的可用性将促进PS系统的田间测试,PS数据将得到可用的基于无人机的图像数据集的补充(RGB,热和多光谱),其中“从运动的结构”候选人将研究结合这些不同数据集的性状数据是否有助于提高检测关键响应的鲁棒性功能,然后可以添加到现有的作物模型,以更好地预测小麦对组合胁迫的敏感性,并优化化学处理的时机。预期的影响。PS系统将被开发为一个高通量工具,用于分析不同温度,光照或干旱环境下生长的拟南芥不同化学处理的影响。在拟南芥中的工作也将允许对已知影响生长的脆弱基因型的治疗进行调查。小麦试验的后续工作将测试PS系统为农民提供有用数据的真实能力,例如早期检测特定基因型的压力和/或疾病和脆弱性,以及提高化学处理应用的效率和可持续性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Building an Error-Annotated Corpus of Learner Indonesian and Developing an Automated Writing Support for Japanese Students Using Deep Linguistic Indonesian Parsers
建立一个错误注释的印尼语学习者语料库,并使用深度语言印尼语解析器为日本学生开发自动写作支持
- 批准号:
23K12235 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
- 批准号:
2315756 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing a deep learning tool for texture analysis of placenta abnormality during pregnancy
开发用于妊娠期间胎盘异常纹理分析的深度学习工具
- 批准号:
2883194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Excellence in Research: Developing a Knowledge Graph Driven Integrative Framework for Explainable Protein Function Prediction via Generative Deep Learning
卓越研究:通过生成深度学习开发知识图驱动的集成框架,用于可解释的蛋白质功能预测
- 批准号:
2302637 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing a Biologically-realistic Model-based Approach for Generating Deep Brain Stimulation Patterns
开发基于生物现实模型的方法来生成深部脑刺激模式
- 批准号:
479824 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Drive to Zero: Developing a digital cohort to understand the drivers of non-sustained viral suppression in the Deep South
驱向零:开发数字队列以了解南方腹地非持续病毒抑制的驱动因素
- 批准号:
10675270 - 财政年份:2023
- 资助金额:
-- - 项目类别: