Design of next-generation automotive corrosion protective coatings by improving inhibitor transport properties

通过改善抑制剂传输性能设计下一代汽车防腐涂料

基本信息

  • 批准号:
    2114064
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The protective coatings industry is currently facing a multi-billion pound challenge to find successful materials substitution for toxic hexavalent chromium-based anti-corrosion agents, typically incorporated as sparingly soluble salt pigments within an organic coating. Cr(VI) use has been assigned a "sunset" date of 2019 by the European union, after which it will be banned. As such there is an urgent need to identify new, environmentally corrosion inhibitive technologies showing equivalent, if not better protective capability. This project provides an excellent opportunity to work with a world leading company involved in the automotive coatings market, namely BASF Automotive, to develop new Cr(vi)-free corrosion inhibitive technologies which will deliver corrosion protection more effectively. The current state of the art, involving phosphate based technology, remains limited since release of active corrosion inhibitive agents into coating defect regions is not well controlled. As a result, there is now significant interest in exploiting the properties of intelligent-release pigments, in which corrosion inhibitive species are stored and only released "on-demand" in the presence of aggressive corrosion-inducing agents. Furthermore, there is also a need to improve the transport of inhibitor species from the bulk of the coating to the areas where they are required (e.g. defects where the underlying metal is exposed). Currently, only a finite quantity of inhibitor originating from the coating in the immediate vicinity of the defect may available to protect exposed metal. By introducing long-range percolation networks within the coating, it is hoped that enhanced transport of inhibitor to defect regions can produce significantly more effective corrosion inhibition at the exposed metal.Project aims:1. To investigate the efficiency of inhibition at penetrative coating defects using current state of the art phosphate based pigments and novel smart-release ion-exchange pigments containing various corrosion inhibitive species.2. To carry out detailed studies with varying in-coating loadings of the above mentioned pigments to evaluate the effect on speed of inhibitor release.3. To assess novel inhibitor delivery systems such as nanotube reservoirs, ion exchange resins and minerals, conducting polymer networks as a means of introducing a long-range percolation pigment network within the protective organic coating.4. To evaluate how long range transport of inhibitor from an optimised system influences the mechanism of coating failure due to de-adhesion originating from corrosion-driven anodic and/or cathodic disbondment in the vicinity of a penetrative defect.The main thrust of the work will be to develop next-generation protective coatings for technologically important light alloy surfaces, typically aluminium and possibly magnesium automotive alloy grades, although the best performing technologies may also be applied to the protection of steel. The program of work will exploit world-leading expertise in advanced electrochemical scanning techniques, coupled with high throughput methodologies to quantify corrosion protection efficiency and provide mechanistic understanding of inhibition mechanisms.The investigation will be carried out using comprehensive in-situ and ex-situ electrochemical characterization by means of scanning Kelvin Probe (SKP), Scanning Vibrating electrode technique (SVET), alongside potentiodynamic and electrochemical impedance spectroscopy methods in the laboratories of the Swansea University corrosion research group. Surface chemical and structural characterization will be carried using a world class suite of instrumentation including X-ray-photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (XRD), and field emission gun scanning electron microscopy (FEG-SEM), available in the Materials Research Centre at the College of Engineering.
保护性涂料行业目前正面临数十亿磅挑战,以找到成功的材料替代有毒的六价铬基防腐蚀剂,通常作为微溶盐颜料掺入有机涂层中。欧盟已指定2019年为铬(VI)使用的“日落”日期,之后将被禁止。因此,迫切需要确定新的环境腐蚀抑制技术,即使没有更好的保护能力,也具有同等的保护能力。该项目提供了一个与世界领先的汽车涂料公司巴斯夫汽车公司合作的绝佳机会,以开发新的无Cr(VI)腐蚀抑制技术,从而更有效地提供腐蚀保护。涉及基于磷酸盐的技术的现有技术仍然是有限的,因为活性腐蚀抑制剂释放到涂层缺陷区域中没有得到很好的控制。因此,现在对开发智能释放颜料的性质有很大的兴趣,其中腐蚀抑制物质被储存并且仅在侵蚀性腐蚀诱导剂存在下“按需”释放。此外,还需要改善抑制剂物质从涂层本体到需要它们的区域(例如暴露下层金属的缺陷)的输送。目前,只有有限量的来自紧邻缺陷的涂层的抑制剂可用于保护暴露的金属。通过在涂层内引入长程渗流网络,希望增强缓蚀剂向缺陷区域的传输,可以在暴露的金属处产生更有效的腐蚀抑制。项目目标:1.研究使用现有技术的磷酸盐基颜料和含有各种腐蚀抑制物质的新型智能释放离子交换颜料对渗透性涂层缺陷的抑制效率.对上述颜料的不同涂层内载量进行详细研究,以评估对抑制剂释放速度的影响。评估新型抑制剂输送系统,如纳米管储库、离子交换树脂和矿物质,导电聚合物网络作为在保护性有机涂层内引入长距离渗透颜料网络的手段。4.为了评估来自优化系统的抑制剂的长距离传输如何影响涂层失效的机理,涂层失效是由于渗透缺陷附近腐蚀驱动的阳极和/或阴极剥离引起的脱粘。这项工作的主要目标是为技术上重要的轻合金表面开发下一代保护涂层,通常是铝和可能的镁汽车合金牌号,尽管最佳性能的技术也可应用于钢的保护。该工作计划将利用世界领先的先进电化学扫描技术的专业知识,结合高通量方法来量化腐蚀防护效率,并提供对缓蚀机制的机械理解。调查将通过扫描开尔文探针(SKP),扫描振动电极技术(SVET),以及斯旺西大学腐蚀研究小组实验室中的动电位和电化学阻抗谱方法。表面化学和结构表征将使用世界一流的仪器套件进行,包括X射线光电子能谱(XPS),掠射角X射线衍射(XRD)和场发射枪扫描电子显微镜(FEG-SEM),可在材料研究中心在工程学院。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
  • 批准号:
    10093454
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
  • 批准号:
    2338365
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: Design and production of a next generation vaccine to prevent COVID
SBIR 第二阶段:设计和生产下一代预防新冠病毒的疫苗
  • 批准号:
    2313338
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-generation system resilience-based design of infrastructure facilities
基于下一代系统弹性的基础设施设计
  • 批准号:
    DE240100207
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
  • 批准号:
    10636329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了