Solid-State Electrolytes for Advanced Energy Storage

用于先进储能的固态电解质

基本信息

  • 批准号:
    2217072
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Achieving ambitious climate change targets (e.g., Clean Growth and Road to Zero strategies) demands electrochemical energy storage technologies with enhanced safety, stability and energy densities. Solid ion-conducting electrolytes are central to this mission and will facilitate both all-solid-state batteries and advanced chemistries based on a metal anode. However, materials that combine sufficient ionic conductivity with desirable processing and interfacial properties remain elusive. The aims of this project are to: - Design new families of inorganic of solid-state electrolytes both in bulk (electrolyte) and thin film (protective layer) formats - Test these components in traditional and beyond Li-ion cells - Develop computational models for these systems and perform validation using experimental data and measured material properties - Utilise cell performance and modelling results to optimise material and device design Structural properties will be determined using x-ray and neutron diffraction and Raman spectroscopy. Conductivity and stability will be assessed using a combination of electrochemical impedance spectroscopy and cyclic voltammetry, in addition to charge/discharge behaviour. Analysis of cycled devices using, e.g., XPS, AFM, x-ray tomography will give chemical and physical insight at interfaces. Initially we will target crystalline Zintl phases and oxide thin films synthesized using scalable solution-based techniques. These relatively unexplored families with wide chemical tunability will function to test design principles for stable, ion-conducting solids fundamental to advanced energy storage. - Design new families of inorganic of solid-state electrolytes both in bulk (electrolyte) and thin film (protective layer) formats- Test these components in traditional and beyond Li-ion cells- Develop computational models for these systems and perform validation using experimental data and measured material properties- Utilise cell performance and modelling results to optimise material and device designStructural properties will be determined using x-ray and neutron diffraction and Raman spectroscopy. Conductivity and stablility will be assessed using a combination of electrochemical impedance spectroscopy and cyclic voltammetry, in additon to charge/discharge behavior. Analysis of cycled devices using, e.g., XPS, AFM, x-ray tomography will give chemical and physical insight at interfaces. Initially we will target crystalline Zintl phases and oxide thin films synthesized using scalable solution-based techniques. These relatively unexplored families with wide chemical tunability will function to test design principles for stable, ion-conducting solids fundamental to advanced energy storage.
实现雄心勃勃的气候变化目标(例如,清洁增长和零排放战略)要求电化学储能技术具有更高的安全性、稳定性和能量密度。固体离子传导电解质是这项使命的核心,将促进全固态电池和基于金属阳极的先进化学反应。然而,将足够的离子传导性与所需的加工和界面性质结合的联合收割机材料仍然是难以实现的。该项目的目标是:- 设计新的无机固态电解质系列,(电解质)和薄膜(保护层)格式-在传统和超越锂离子电池中测试这些组件-为这些系统开发计算模型,并使用实验数据和测量的材料特性进行验证-利用电池性能和建模结果优化材料和器件设计将使用X射线和中子衍射以及拉曼光谱确定结构特性。除了充电/放电行为外,还将使用电化学阻抗谱和循环伏安法的组合评估电导率和稳定性。分析循环器械,例如,XPS、AFM、X射线断层扫描将提供界面处的化学和物理洞察。最初,我们将针对结晶Zintl相和氧化物薄膜合成使用可扩展的解决方案为基础的技术。这些相对未开发的具有广泛化学可调性的系列将用于测试先进能量存储基础的稳定离子传导固体的设计原则。- 设计新的无机或固态电解质系列,(电解质)和薄膜(保护层)格式-在传统和超越锂离子电池中测试这些组件-为这些系统开发计算模型,并使用实验数据和测量的材料特性进行验证-利用电池性能和建模结果优化材料和设备设计结构特性将使用x-射线和中子衍射以及拉曼光谱。除了充电/放电行为外,还将使用电化学阻抗谱和循环伏安法的组合评估电导率和稳定性。分析循环器械,例如,XPS、AFM、X射线断层扫描将提供界面处的化学和物理洞察。最初,我们将针对结晶Zintl相和氧化物薄膜合成使用可扩展的解决方案为基础的技术。这些相对未开发的具有广泛化学可调性的系列将用于测试先进能量存储基础的稳定离子传导固体的设计原则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Understanding the mechanosynthesis mechanism of solid-state electrolytes via in-situ synchrotron XRD
通过原位同步加速器 XRD 了解固态电解质的机械合成机制
  • 批准号:
    24K17553
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries
为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质
  • 批准号:
    2324593
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design of novel polymer electrolytes for solid state sodium batteries.
固态钠电池新型聚合物电解质的设计。
  • 批准号:
    DP240101661
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Synthesis of new composite solid state electrolytes and development of high performace and high stability of solid state sodium ion battery
新型复合固态电解质的合成及高性能高稳定性固态钠离子电池的开发
  • 批准号:
    23K04915
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RII Track-4:NSF: Rational Design and Engineering of Composite Electrolytes for All-solid-state Li-S Batteries
RII Track-4:NSF:全固态锂硫电池复合电解质的合理设计与工程
  • 批准号:
    2229305
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing Polymer Electrolytes for Operational All-Solid-State Batteries
开发适用于全固态电池的聚合物电解质
  • 批准号:
    DE230101105
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
CCPR073 - Discovery of inorganic lithium solid electrolytes for all-solid-state batteries
CCPR073 - 用于全固态电池的无机锂固体电解质的发现
  • 批准号:
    2896583
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
LEAPS-MPS: Machine Learning-guided Identification of Mechanically Stabilizing Solid-state Electrolytes
LEAPS-MPS:机器学习引导的机械稳定固态电解质的识别
  • 批准号:
    2316667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了