Perceptual and Decisional Processes in Categorization
分类中的感知和决策过程
基本信息
- 批准号:6621164
- 负责人:
- 金额:$ 14.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:adult human (21+) attention behavior prediction behavioral /social science research tag clinical research cognition cues decision making discrimination learning human subject learning mathematical model model design /development negative reinforcements neural information processing performance psychological models psychomotor reaction time reinforcer sensory feedback visual perception
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of the proposed
research is to identify and quantify the perceptual and cognitive processes
that are involved when an observer is presented with a categorization problem
in which the prior probabilities (or base-rates) of the categories, and the
costs and benefits (or payoffs) associated with categorization decisions are
manipulated. With funding from NIH Research Grant # S R01 MH59196 my students
and I made significant progress toward understanding the processes involved in
decision criterion learning when base-rates and payoffs are manipulated, and
toward understanding the complex interplay between several factors that
influence base-rate/payoff learning. This work answered many questions, but
also suggested many new lines of research. The purpose of this proposal is to
expand our previous work in several new directions. The approach taken in the
proposed research is to isolate and quantify the influence of several variables
on decision criterion learning by comparing human performance with that of the
optimal classifier--a hypothetical device that maximizes long-run reward. The
aim is to test quantitative models of trial-by-trial and asymptotic performance
by developing an "optimal" and several "sub-optimal" models, which instantiate
important theoretical constraint. Four lines of research are
proposed. Project 1 examines the effects of category distribution manipulations
on base-rate and payoff learning. Theoretical work suggests that category
discriminability, d', and category variance manipulations have a large effect
on the rate of change in reward (or steepness) of the objective reward function
which relates objective reward to the location of the decision criterion. If
observers are sensitive to differences in steepness (called the flat-maxima
hypothesis) then this should affect the speed and asymptote of learning.
Project 2 examines the effects of payoff matrix manipulations on decision
criterion learning. Theoretical work from our lab suggests that payoff matrix
multiplication affect steepness, whereas matrix addition does not. Project 3
examines different types of feedback that might improve decision criterion
learning. Especially promising is feedback based on the optimal classifier.
Project 4 extends the studies in Project I - 3 to an explicit decision
criterion task where observers adjust an observable decision criterion on each
trial. These data are useful for testing learning models.
简介(由申请人提供):建议的长远目标
研究是识别和量化知觉和认知过程
当观察者遇到分类问题时涉及到的
其中类别的先验概率(或基本概率),以及
与分类决策相关的成本和收益(或收益)是
被操纵了。在国立卫生研究院研究补助金的资助下#S R01 MH59196我的学生
我在理解涉及到的过程方面取得了重大进展
当基本利率和收益被操纵时,决策标准学习,以及
有助于理解以下几个因素之间的复杂相互作用
影响基本利率/回报学习。这项工作回答了许多问题,但
也提出了许多新的研究方向。这项建议的目的是
在几个新的方向上扩展我们以前的工作。采取的方法是在
建议的研究是分离和量化几个变量的影响
人与人的比较决策准则学习研究
最佳分类器--一种使长期回报最大化的假设装置。这个
目的是检验逐次试验的量化模型和渐近性能
通过开发一个“最优”和几个“次最优”模型,实例化了
重要的理论约束。四个研究方向是
建议。项目1考察了类别分布操纵的影响
关于基本利率和收益的学习。理论研究表明,范畴
区分度、d‘和类别方差操作有很大的影响
关于目标报酬函数的报酬(或陡度)变化率
它将客观报酬与决策标准的位置联系起来。如果
观察者对陡度(称为平坦最大值)的差异很敏感
假设),那么这应该会影响学习的速度和渐近线。
项目2考察了支付矩阵操作对决策的影响
规范学习。我们实验室的理论工作表明,收益矩阵
相乘会影响陡度,而矩阵相加则不会。项目3
检查可能改进决策标准的不同类型的反馈
学习。其中,基于最优分类器的反馈算法尤其有前景。
项目4将项目I-3中的研究扩展为明确的决定
标准任务,观察者在每个标准任务上调整一个可观测的决策标准
审判。这些数据对测试学习模型很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W Todd TODD MADDOX其他文献
W Todd TODD MADDOX的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W Todd TODD MADDOX', 18)}}的其他基金
A computational neuroscience approach to frontal compensation in decision-making
决策中额叶补偿的计算神经科学方法
- 批准号:
8613687 - 财政年份:2014
- 资助金额:
$ 14.66万 - 项目类别:
Tests of neurobiologically-inspired Model of the Motivation-Learning Interface
动机学习界面的神经生物学启发模型的测试
- 批准号:
7259002 - 财政年份:2007
- 资助金额:
$ 14.66万 - 项目类别:
Tests of neurobiologically-inspired Model of the Motivation-Learning Interface
动机学习界面的神经生物学启发模型的测试
- 批准号:
7800473 - 财政年份:2007
- 资助金额:
$ 14.66万 - 项目类别:
Tests of neurobiologically-inspired Model of the Motivation-Learning Interface
动机学习界面的神经生物学启发模型的测试
- 批准号:
8053320 - 财政年份:2007
- 资助金额:
$ 14.66万 - 项目类别:
Tests of neurobiologically-inspired Model of the Motivation-Learning Interface
动机学习界面的神经生物学启发模型的测试
- 批准号:
7597069 - 财政年份:2007
- 资助金额:
$ 14.66万 - 项目类别:
Perceptual and Decisional Processes in Categorization
分类中的感知和决策过程
- 批准号:
6700759 - 财政年份:1999
- 资助金额:
$ 14.66万 - 项目类别:
Perceptual and Decisional Processes in Categorization
分类中的感知和决策过程
- 批准号:
6430716 - 财政年份:1999
- 资助金额:
$ 14.66万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
- 批准号:
2312517 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant