Tunnelling-induced Damage Assessment of Vulnerable Historic Structures

隧道开挖造成的易损历史建筑损坏评估

基本信息

  • 批准号:
    2261547
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

This project falls within the EPSRC Structural Engineering, Ground Engineering, Infrastructure and Urban Systems research areas.The presented research summary is related to the damage assessment of vulnerable historic masonry structures, which features interdisciplinary aspects related to structural and geotechnical engineering. The rapid population growth is one of the global challenges of the 21st century. In particular, urban population growth causes various infrastructure problems, including severe traffic congestion on the transportation network. Recent developments in the infrastructure technology enable responding to this demand with the construction of underground transportation systems. However, tunnel construction and deep excavation usually create vertical and horizontal ground movements, which can cause damage in nearby structures. Thus, the building response to tunnelling and excavation-induced ground movements needs to be examined in detail for safe underground constructions. There are multiple uncertainties to be considered while modelling tunnelling-induced damage in historic masonry structures. For instance, defining the boundary conditions in the soil-structure analyses or the material properties and existing cracks in the masonry building for different structural elements will involve many uncertainties. In the literature, tunnelling-induced building damage is determined by considering the following procedure: 1) the ground movement is investigated in the free-field conditions, 2) the effect of building stiffness is computed for the free-field ground movement conditions, 3) the building damage is estimated by considering the soil-structure interaction and 4) the level of the building damage is evaluated. Additionally, the procedure may combine results from physical model tests and numerical modelling calculations with field observations. The risk of tunnelling-induced damage in existing masonry buildings is typically assessed in current engineering practice by either modelling the building as an elastic beam or by modelling the tunnel construction, soil and the building in detailed finite element analysis. However, while the elastic beam model is a relatively crude approach to model the tunnel-soil-building interaction, the detailed three-dimensional (3D) numerical analysis requires high computational cost and time. The motivation for the this research is to develop numerically efficient and practical modelling procedures to assess the tunnelling-induced damage to masonry buildings by increasing the accuracy of the model while simulating the critical aspects of the problem and by requiring less computational time and cost compared with detailed 3D finite element models.The overall objectives of this research are summarized as;simulating complex building response by developing practical new numerical models,developing detailed constitutive models for the individual structural elements of the model that can be employed to specific case studies,modelling the behaviour of special features such as pre-existing cracks and the irregular openings in the masonry buildings,improving a practical soil-foundation model to represent the effect of soil-structure interactions and the transmission of the tunnelling-induced ground movements to the structureusing innovative structural health monitoring methods such as fibre optic sensors and digital image correlation systems to collect the building response data(by measuring the displacement and strain behaviour of the whole structure) from the field experiments;In conclusion, this research will contribute to decrease the uncertainties in the modelling process of the soil-structure interaction and the masonry building behaviour due to tunnelling-induced ground movements. The outcomes of the research will be useful to identify optimal modelling strategies, which can make future assessments of tunnelling-induced damage in masonry buildings more reliable.
该项目属于EPSRC结构工程、地面工程、基础设施和城市系统研究领域。目前的研究摘要涉及易损性历史砖石结构的损害评估,其特点是与结构和岩土工程相关的跨学科方面。人口的快速增长是21世纪的全球性挑战之一。特别是,城市人口的增长导致了各种基础设施问题,包括交通网络的严重拥堵。基础设施技术的最新发展使建造地下交通系统能够满足这一需求。然而,隧道施工和深挖通常会产生垂直和水平的地表移动,这可能会对附近的建筑物造成破坏。因此,为了安全地进行地下施工,需要详细检查建筑物对隧道开挖和开挖引起的地面移动的响应。在对具有历史意义的砖石结构进行隧道开挖损伤建模时,需要考虑多种不确定性因素。例如,在土-结构分析中定义边界条件,或者为不同的结构元素定义材料特性和砖砌建筑中的现有裂缝,将涉及许多不确定性。在文献中,隧道施工引起的建筑物损伤是通过考虑以下步骤来确定的:1)在自由场条件下研究地面移动,2)在自由场移动条件下计算建筑物刚度的影响,3)考虑土-结构相互作用来估计建筑物的损伤,4)评估建筑物的损伤程度。此外,该程序可以将物理模型试验和数值模拟计算的结果与现场观测相结合。在现有的工程实践中,通常通过将建筑物建模为弹性梁或通过在详细的有限元分析中对隧道结构、土体和建筑物进行建模来评估隧道施工引起的建筑物损坏的风险。然而,虽然弹性梁模型是模拟隧道-土-建筑物相互作用的一种相对粗糙的方法,但详细的三维(3D)数值分析需要较高的计算成本和时间。这项研究的动机是开发数值高效和实用的模拟程序,通过提高模型的精度,同时模拟问题的关键方面,并通过与详细的三维有限元模型相比,需要更少的计算时间和成本,来评估隧道施工对砖石建筑的破坏。通过开发实用的新数值模型来模拟复杂的建筑响应,为模型中的各个结构元素开发可用于具体案例研究的详细本构模型,对砖石建筑中预先存在的裂缝和不规则洞口等特殊特征的行为进行模拟,改进实用的土壤-基础模型,以反映土-结构相互作用的影响和隧道施工引起的地面移动对结构的传递,使用创新的结构健康监测方法,如光纤传感器和数字图像相关系统,从现场实验中收集建筑响应数据(通过测量整个结构的位移和应变行为);综上所述,这项研究将有助于减少土-结构相互作用和由于隧道开挖引起的地面移动引起的砌体建筑行为建模过程中的不确定性。研究的结果将有助于确定最优的建模策略,从而使未来对隧道施工引起的砖石建筑损伤的评估更加可靠。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
cGAS-STING激活IFN1反应介导噪声性耳蜗损伤机制研究
  • 批准号:
    82371152
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于NLRP3/IL-1β信号探讨α7nAChR介导巨噬细胞—心肌细胞互作在Aβ诱导房颤心房重构中的作用及机制研究
  • 批准号:
    82300356
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
脂肪酸合成通过GDF15/IRS2介导胰岛素抵抗促进血管内皮细胞活化导致脓毒症肺损伤的机制研究
  • 批准号:
    82372203
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
NRF2/MFN2/ERS信号异常促进ADSCs衰老和肥大型肥胖皮下脂肪组织胰岛素抵抗的机制研究
  • 批准号:
    32000511
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
  • 批准号:
    92068107
  • 批准年份:
    2020
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
m6A识别蛋白YTHDFs在体细胞重编程中的调控作用及机制研究
  • 批准号:
    32000501
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子SALL4通过影响pre-mRNA可变剪接调控非Yamanaka因子体细胞重编程的机制研究
  • 批准号:
    32000502
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CD10蛋白N-糖基化修饰介导PI3Kα活化诱导细胞衰老的分子机制研究
  • 批准号:
    32000508
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子剂量效应调控体细胞重编程的表观遗传机制研究
  • 批准号:
    31970681
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
  • 批准号:
    10748479
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Protecting spermatogonial stem cells from chemotherapy-induced damage for fertility preservation in childhood cancer
保护精原干细胞免受化疗引起的损伤,以保存儿童癌症的生育能力
  • 批准号:
    MR/Y011783/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Impact of ATR's role in translesion synthesis on prevention of DNA damage induced mutagenesis and chromosomal instability
ATR 在跨损伤合成中的作用对预防 DNA 损伤诱导的突变和染色体不稳定性的影响
  • 批准号:
    10634852
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
  • 批准号:
    10722518
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
  • 批准号:
    10735154
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Time Restricted Feeding in Diet Induced Obesity Improves Aortic Damage and Endothelial Function Through Reducing Th17 Cells
饮食中的限时喂养通过减少 Th17 细胞改善主动脉损伤和内皮功能
  • 批准号:
    10606103
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Role of PAI-1 and Mechanism of intracapillary throbi induced by podocyte damage
PAI-1的作用及足细胞损伤引起毛细血管内血栓的机制
  • 批准号:
    23K07717
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism underlying cellular senescence and aging induced by the continuous DNA damage
阐明持续DNA损伤引起的细胞衰老和老化的机制
  • 批准号:
    22KJ0646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
  • 批准号:
    10675929
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了