Efficiently tuning quantum devices using machine learning
使用机器学习有效调整量子设备
基本信息
- 批准号:2268392
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Controlling materials on the nanoscale is now sufficiently refined that new methods are needed for fabricating the structures and tuning their performance. In many cases we are reaching the limits of our ability to do this using human control of the process, all the more so when a key consideration is scalability for technological applications. The project identifies quantum devices where machine learning will provide the key to speeding up, scaling up, and opening up new technologies. The objective is to optimise the tuning of quantum devices. Quantum device variability is a challenge to tackle, all the more so when a key consideration is scalability for technological applications such as quantum computing. For this, the student will develop machine learning techniques such as deep learning and Bayesian optimisation. Human expert takes hours to find the optimal device parameters, impeding the realisation of large quantum circuits. The parameter space of a single quantum device is at least ten dimensional. To explore this large parameter space, algorithms that allow for an efficient search of optimal parameters will be established. The experiments will be realized at cryogenic temperatures with dedicated low-noise electronics. The quantum devices will be nanostructures defined electrostatically in semiconductors such as gallium arsenide. Although machine learning is well established for data mining in materials science, and is starting to be used for materials design, the full potential of machine learning for controlling nanoscale experiments is untapped, and there is a clear need for advanced machine learning approaches. The use of machine learning techniques to advance device physics, is in its early stages and it is already proving essential in the fabrication, characterisation and tuning of quantum devices. This project is key to unleash the potential of quantum technologies by allowing fast measurement of quantum devices, and thus the possibility to control technologically relevant quantum circuits. A collaboration with University of Basel provides us with the quantum devices we require for our experiments, and a collaboration with the Department of Engineering at University of Oxford allows us to benefit from the expertise of computer scientist dedicated to the study of artificial intelligence, in particular Bayesian optimisation and other machine learning techniques which do not require large amounts of data, which is not available for quantum devices. This project falls within the EPSRC Quantum technologies research area.Student is case conversion with company Graphcore
在纳米尺度上控制材料现在已经足够精细,需要新的方法来制造结构和调整它们的性能。在许多情况下,我们通过人工控制流程来实现这一目标的能力已经达到了极限,当关键考虑因素是技术应用的可扩展性时,情况就更是如此。该项目确定了量子设备,机器学习将为加速,扩大和开放新技术提供关键。目标是优化量子器件的调谐。量子设备的可变性是一个需要解决的挑战,尤其是当一个关键的考虑因素是量子计算等技术应用的可扩展性时。为此,学生将开发机器学习技术,如深度学习和贝叶斯优化。人类专家需要数小时才能找到最佳的设备参数,这阻碍了大型量子电路的实现。单个量子器件的参数空间至少是十维的。为了探索这个大的参数空间,将建立允许有效搜索最佳参数的算法。实验将在低温下用专用的低噪声电子设备实现。量子器件将是在砷化镓等半导体中静电定义的纳米结构。虽然机器学习在材料科学中的数据挖掘方面已经很成熟,并开始用于材料设计,但机器学习在控制纳米级实验方面的全部潜力尚未开发,显然需要先进的机器学习方法。使用机器学习技术来推进设备物理学,目前还处于早期阶段,它已经被证明在量子设备的制造、表征和调整中至关重要。该项目是释放量子技术潜力的关键,它允许快速测量量子设备,从而有可能控制技术相关的量子电路。与巴塞尔大学的合作为我们提供了实验所需的量子设备,与牛津大学工程系的合作使我们能够受益于致力于人工智能研究的计算机科学家的专业知识,特别是贝叶斯优化和其他不需要大量数据的机器学习技术,这对于量子设备来说是不可用的。这个项目福尔斯属于EPSRC量子技术研究领域。学生是Graphcore公司的案例转换
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
- 批准号:
2886876 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Electronic phase tuning in organic two-dimensional hole-gas system and organic quantum electronics
有机二维空穴气体系统中的电子相位调谐和有机量子电子学
- 批准号:
22H04959 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CMOS-OxRAM integrated circuits for low-power AI and cryogenic quantum dot auto-tuning
用于低功耗人工智能和低温量子点自动调谐的 CMOS-OxRAM 集成电路
- 批准号:
580722-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: TUNING QUANTUM STATES OF MAGNETIC TOPOLOGICAL SYSTEMS WITH PRESSURE
职业:利用压力调节磁拓扑系统的量子态
- 批准号:
2045760 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
- 批准号:
EP/T02108X/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




