Algebraic Properties of Superconformal Field Theories

超共形场论的代数性质

基本信息

  • 批准号:
    2272671
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This project falls within the EPSRC Mathematical Physics Research AreaConformal Field Theories (CFTs) are an important class of Quantum Field Theories (QFTs) that enjoy a large enhancement of their spacetime symmetries. Conformal field theories which preserve supersymmetry enjoy an even larger group of symmetries and are known as Superconformal Theories (SCFTs). While QFTs have seen great success in a range of applications, their analysis is often limited by a reliance on perturbative methods, which fail in the regime of strong coupling. The algebraic properties of CFTs and SCFTs, however, allow for the use of powerful non-perturbative methods.Specifically, conformal field theories are equipped with an Operator Product Expansion (OPE), which is an algebraic operation in the space of local operators. The OPE allows a product of local operators to be expanded in a power series of primary operators and their descendants. To ensure well-definedness of correlation functions, the OPE algebra must be associative. Enshrining this requirement of associativity as a key feature of a CFT has led to the idea of the Conformal Bootstrap, which seeks to constrain the data that defines a valid CFT.In two-dimensional CFTs, the OPE algebra is highly constrained by the presence of infinite chiral subalgebras in terms of which the rest of the OPE algebra is organized. Here one finds rich algebraic structures such as Virasoro and Kac-Moody vertex operator algebras. In [1], it was shown that such chiral algebras also arise cohomologically in four-dimensional N=2 superconformal field theories, which has led to the discovery of a bevy of important and surprising consequences for the four-dimensional physics such as novel central charge bounds and connections to modular forms.The power of the OPE algebra also allows one to analyse theories which may not have Lagrangian descriptions. For instance, there are the theories of Class S, which are the low-energy limit of a six dimensional superconformal theory compactified on a Riemann Surface. With a few exceptions, these theories are not described by a Lagrangian field theory. In [2], the chiral algebra correspondence of [1] was used to investigate the structure of the space of Class S theories. By associating the chiral algebra of a Class S theory with its UV curve (a two-dimensional manifold), it is possible to use the methods of generalized topological quantum field theory to capture some of the structure of Class S theories. This approach was subsequently used to great effect to define rigorously the chiral algebras of Class S theories in [3].The aim of this project will be to exploit the novel mathematical structures present in chiral algebras of Class S to elucidate their structure and extend the analysis of these models that has been performed to date. Some concrete goals include a clarification of the physical interpretation of the results of Arakawa for non-simply laced Lie algebras, a generalization of those results to the case of class S theories involving general twisted punctures. These targets are at the cutting edge of the emerging interface between superconformal field theory and vertex operator algebras.
共形场论(Conformal Field Theories,简称CFTs)是量子场论(Quantum Field Theories,简称QFT)的一个重要分支,它极大地增强了时空对称性。保形场论保留了超对称性,并享有更大的对称群,被称为超保形理论(Superconformal Theories,SCFT)。虽然QFT在一系列应用中取得了巨大的成功,但它们的分析往往受到依赖微扰方法的限制,而微扰方法在强耦合的情况下会失败。然而,CFT和SCFT的代数性质允许使用强大的非微扰方法。具体地说,共形场论配备了算子乘积展开(OPE),这是局部算子空间中的代数运算。OPE允许本地算子的乘积在主算子及其后代的幂级数中扩展。为了保证相关函数的良好定义性,OPE代数必须是结合的。将结合性的要求作为CFT的关键特征,导致了共形引导的想法,其试图约束定义有效CFT的数据。在二维CFT中,OPE代数受到无限手征子代数的高度约束,OPE代数的其余部分是根据这些手征子代数组织的。在这里,人们发现丰富的代数结构,如Virasoro和Kac-Moody顶点算子代数。在[1]中,证明了这样的手征代数在四维N=2超共形场论中也是上同调的,这导致了对四维物理的一系列重要和令人惊讶的结果的发现,如新的中心电荷界和与模形式的联系。OPE代数的力量也允许人们分析可能没有拉格朗日描述的理论。例如,有S类理论,这是在黎曼曲面上紧致化的六维超共形理论的低能极限。除了少数例外,这些理论都不能用拉格朗日场论来描述。在[2]中,利用[1]中的手征代数对应研究了S类理论空间的结构。通过将S类理论的手征代数与其UV曲线(二维流形)相关联,可以使用广义拓扑量子场论的方法来捕获S类理论的一些结构。在[3]中,这种方法被用于严格定义S类理论的手征代数。本项目的目的是利用S类手征代数中存在的新的数学结构来阐明它们的结构,并扩展迄今为止对这些模型的分析。一些具体的目标包括一个澄清的物理解释的结果荒川为非简单的花边李代数,推广这些结果的情况下,S类理论涉及一般扭曲穿刺。这些目标是在超共形场论和顶点算子代数之间的新兴接口的最前沿。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twisted Chiral Algebras of Class S and Mixed Feigin-Frenkel Gluing.
Free Field Realisation of the Chiral Universal Centraliser.
  • DOI:
    10.1007/s00023-023-01305-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Beem, Christopher;Nair, Sujay
  • 通讯作者:
    Nair, Sujay
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了