Singularity formations in non linear partial differential equations

非线性偏微分方程中的奇异性形成

基本信息

  • 批准号:
    2278691
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

In many non-linear evolutionary or stationary partial differential equations (PDEs), one observes the formation of singularities or some form of concentration of their solutions, as the time-variable or a parameter of the model approaches a limit value. In that case solutions become highly concentrated on lower-dimensional sets, thus losing smoothness and approaching a singular limit. This project is devoted to the study of formation of singularities for solutions of classes of non-linear PDEs. The questions the project intend to answer are: Do singularities occur? What is the mechanism that triggers the formation of singularities? Where (in space) and when (in time) do singularities develop? What is the shape of such singularities? What happens after the formation of singularities? The novel mathematical methodology that will be carried out during the project consists of identifying first the form and location of a possible singularity and using this to construct a good approximate solution. This first step requires a deep understanding of the model the PDEs are describing. The second step consists of designing an analytic strategy to produce an actual solution rather than an approximate one, for instance by using a perturbation argument. The student will consider some model PDEs which describe the motion of an incompressible fluid in dimension two, such as Euler equations, Navier-Stokes equations and the lake equations, as well as some parabolic critical non-linear PDEs. The initial aim is to construct solutions with bounded initial vorticity which produce a global solution whose gradient grows in time as a double exponential for the lake equation, using as a reference the paper 'Small scale creation for solutions of the incompressible two dimensional Euler equation' by Kiselev and Sverak. The plan is also to investigate the evolution of concentrated vorticities in the Navier-Stokes 2-dimensional model for small viscosity, when the initial vorticity is highly concentrated around a given number of points. The specific aim is to build such solutions using gluing techniques.
在许多非线性进化或平稳偏微分方程(PDEs)中,当模型的时间变量或参数接近一个极限值时,人们观察到奇点的形成或其解的某种形式的集中。在这种情况下,解变得高度集中在低维集合上,从而失去平滑性并接近奇异极限。本课题主要研究一类非线性偏微分方程解奇点的形成。这个项目想要回答的问题是:奇点会发生吗?触发奇点形成的机制是什么?奇点在哪里(在空间上)和何时(在时间上)发展?奇点的形状是什么?奇点形成后会发生什么?新数学方法将在项目中实施,包括首先确定可能的奇点的形式和位置,并使用它来构建一个很好的近似解。这第一步需要对pde所描述的模型有深刻的理解。第二步包括设计一个解析策略来产生一个实际的解决方案,而不是一个近似的解决方案,例如通过使用摄动参数。学生将考虑一些描述二维不可压缩流体运动的模型偏微分方程,如欧拉方程、纳维-斯托克斯方程和湖方程,以及一些抛物线临界非线性偏微分方程。最初的目的是构造具有有界初始涡度的解,该解产生梯度随时间增长的湖方程全局解,作为双指数,参考Kiselev和Sverak的论文“不可压缩二维欧拉方程解的小尺度创建”。该计划还将研究小粘度下Navier-Stokes二维模型中集中涡度的演变,当初始涡度高度集中在给定数量的点周围时。具体目标是使用粘合技术构建这样的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

The Modernist Formations by Diasporic African American Writers
海外非裔美国作家的现代主义形成
  • 批准号:
    23K12133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A novel design approach for sustainable and resilient railway formations
可持续和有弹性的铁路编组的新颖设计方法
  • 批准号:
    LP220100334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Understanding the Changing Formations of Race and Racism in Contemporary Britain through the Prism of Anti-Racist Organising
通过反种族主义组织的棱镜了解当代英国种族和种族主义不断变化的形态
  • 批准号:
    2901781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigation of the molecular formations and the pathomechanisms of the neuromuscular junction
神经肌肉接头的分子形成和病理机制的研究
  • 批准号:
    23H02794
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
  • 批准号:
    RGPIN-2019-07150
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Carbon Carbon Bond Formations for Novel Se-, S-, and O-Heterocycle Synthesis
用于新型 Se-、S- 和 O-杂环合成的高效碳碳键形成的开发
  • 批准号:
    10683083
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Rethinking the Genesis of Banded Iron Formations: Simulating Partial Fe(II) Oxidation and Secondary Reactions of Iron-Silica Precipitates
重新思考带状铁形成的成因:模拟铁-二氧化硅沉淀物的部分 Fe(II) 氧化和二次反应
  • 批准号:
    2142509
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synthesis of Functional Molecules by Electrochemical Carbon-Heteroatom Bond Formations
通过电化学碳-杂原子键形成功能分子的合成
  • 批准号:
    22H02122
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Impact of Shear-Induced Pore Pressures on the Ground Deformations Around Underground Excavations in Shale Rock Formations for Long-Term Nuclear Waste Storage
剪切引起的孔隙压力对长期核废料储存页岩岩层地下开挖周围地面变形的影响
  • 批准号:
    558519-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了