Rationale Design of Next Generation Antimicrobial Surfaces

下一代抗菌表面的基本原理设计

基本信息

  • 批准号:
    2281087
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

A major issue faced by users of biomedical devices is the risk of bacteria-induced infections as biomaterial surface are favourable for bacterial adhesion and biofilm formation. Biofilms on medical devices account for a significant proportion of healthcare-associated infections that are estimated to cost the NHS approximately £1 billion per year. Bacteria that grow in biofilms, a slime-like substance that can grow and cover the surfaces of biomedical devices, can be hundreds of times more resistant to antibiotics and the environment than their planktonic counterpart. Biofilms also act to disperse additional bacterial cells into an infected site once they reach maturity, causing further infection. Both factors make biofilm eradication a great challenge for healthcare. To address the issues caused by bacteria and their biofilms, several different approaches are being taken by researchers to develop 'anti-microbial' and 'anti-fouling' surfaces. The most common strategy uses coatings that release chemical agents such as antibiotics and silver ions to kill the bacteria. Unfortunately, however, these chemical bactericidal strategies can often contribute to the emergence of antimicrobial resistance (AMR). There is, therefore, a pressing need to develop antimicrobial surfaces that do not utilise antibiotics or other antimicrobial agents to kill bacteria. This project will investigate the alternate approach of developing surface structures that prevent biofouling without the use of chemicals. In the past, cues were taken from nature when designing anti-fouling surfaces and natural surfaces known to exhibit anti-fouling behaviour were mimicked with limited success. These included the surfaces of lotus leaves, cicada wings, and gecko skin, to name but a few. More recently, research has been conducted into developing custom nanostructures such as arrays of nanopillars, nanocones, and nanopits. The sizes of these nanostructures are often chosen arbitrarily or with respect to manufacturing constraints; not as a result of a critical understanding of the underlying physics of the future bacteria-surface interaction. Regrettably, the physics of bacteria-materials surface interactions remains poorly understood, which significantly hinders the innovative design of next generation anti-biofilm surfaces.Therefore, this project aims to employ a combined experimental and modelling approach to address the fundamental physical questions about how structured antimicrobial surfaces affect bacteria attachment and biofilm formation. This project well aligns with EPSRC remits on healthcare technologies, biomaterials, materials engineering, and soft matter physics. The specific objectives are:- Reveal how the surface physical properties of materials control the bacteria-material adhesion under static and flow conditions.- Develop a robust computational model to predict the effect of surface physical properties of materials and the initial attachment of bacteria on the formation of bacterial biofilms.- Develop novel material surfaces with prolonged antifouling performance. To achieve these objectives, the following will be performed:- Various nanostructured surfaces on typical biomaterials will be designed and manufactured. Each will contain several different nanostructure shapes, sizes and spatial distributions.- Various clinically relevant bacteria will be cultured on these nanostructures. Both static and flowing tests will be carried out.- Bacterial attachment and biofilm formation will be analysed using a variety of optical techniques.- A novel in-house computational model would be developed to study the fundamental physical interactions between bacteria and materials.- Use experimental results to validate and calibrate the computational modelling. - Refine the computational models to enable robust predictions of bacterial attachment and biofilm growth.- Use the validated model to aid in the design of novel antifouling surface
生物医疗器械用户面临的一个主要问题是细菌诱导感染的风险,因为生物材料表面有利于细菌粘附和生物膜形成。医疗器械上的生物膜占医疗保健相关感染的很大一部分,估计每年花费NHS约10亿英镑。在生物膜中生长的细菌,一种可以生长并覆盖生物医学设备表面的粘液状物质,对抗生素和环境的抵抗力可能是其抗生素对应物的数百倍。生物膜还可以将额外的细菌细胞分散到感染部位,一旦它们达到成熟,就会引起进一步的感染。这两个因素使生物膜根除成为医疗保健的一个巨大挑战。为了解决由细菌及其生物膜引起的问题,研究人员正在采取几种不同的方法来开发“抗微生物”和“防污”表面。最常见的策略是使用涂层来释放化学试剂,如抗生素和银离子来杀死细菌。然而,不幸的是,这些化学杀菌策略通常会导致抗菌素耐药性(AMR)的出现。因此,迫切需要开发不利用抗生素或其他抗微生物剂来杀死细菌的抗微生物表面。本项目将研究开发表面结构的替代方法,在不使用化学品的情况下防止生物污损。在过去,当设计防污表面时,从自然界中获取线索,并且已知表现出防污行为的自然表面被模仿,但成功有限。这些包括荷叶、鸡翅、壁虎皮等表面。最近,已经进行了研究以开发定制的纳米结构,例如纳米柱、纳米锥和纳米孔的阵列。这些纳米结构的尺寸通常是任意选择的,或者是根据制造限制而选择的;而不是对未来细菌-表面相互作用的基本物理学的批判性理解的结果。遗憾的是,细菌-材料表面相互作用的物理学仍然知之甚少,这大大阻碍了下一代抗生物膜表面的创新设计,因此,本项目旨在采用实验和建模相结合的方法来解决结构化抗菌表面如何影响细菌附着和生物膜形成的基本物理问题。该项目与EPSRC在医疗保健技术,生物材料,材料工程和软物质物理学方面的职责保持一致。具体目标是:-揭示材料的表面物理性质如何控制静态和流动条件下的细菌-材料粘附。开发一个强大的计算模型来预测材料的表面物理特性和细菌的初始附着对细菌生物膜形成的影响。开发新型材料表面,延长耐腐蚀性能。为了实现这些目标,将进行以下工作:-将设计和制造典型生物材料上的各种纳米结构表面。每一个都将包含几种不同的纳米结构形状,大小和空间分布。各种临床相关的细菌将在这些纳米结构上培养。将进行静态和流动测试。细菌附着和生物膜形成将使用各种光学技术进行分析。将开发一种新的内部计算模型来研究细菌和材料之间的基本物理相互作用。使用实验结果来验证和校准计算模型。- 优化计算模型,以实现对细菌附着和生物膜生长的稳健预测。使用验证模型来辅助设计新的曲面

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: SmartCAD: Shaping The Next Revolution in Computer-Aided Design
职业生涯:SmartCAD:塑造计算机辅助设计的下一场革命
  • 批准号:
    2339249
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
  • 批准号:
    10093454
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
  • 批准号:
    2338365
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: Design and production of a next generation vaccine to prevent COVID
SBIR 第二阶段:设计和生产下一代预防新冠病毒的疫苗
  • 批准号:
    2313338
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-generation system resilience-based design of infrastructure facilities
基于下一代系统弹性的基础设施设计
  • 批准号:
    DE240100207
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了