Polarons in Ultracold Atomic Gases

超冷原子气体中的极化子

基本信息

  • 批准号:
    2282424
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The dynamics of an impurity coupled to a quantum system represents a conceptually simple, yet highly non-trivial physical system. For instance, an electron moving through an ionic lattice will locally distort the lattice (due to Coulomb repulsion). The combined system of the impurity plus the local distortion is conventionally referred to as a polaron. The polaron acts like an isolated particle in many ways, and has a well-defined energy and mass that can differ considerably from that of the isolated impurity.Polarons play essential roles in a variety of Condensed Matter systems including superconductors, Kondo systems, and colossal magnetoresitance materials. Additionally, at the theoretical level, polarons are interesting intheir own right. Ror instance, one of the first non-trivial application of Feynman's path integral focused on computing the mass of a polaron.Despite years of investigation dating back to the early work of Frohlich and Feynmann, many aspects of polarons are still not understood. For this reason, in the past five years, a large amount of experimental work employing gases of ultra-cold atoms focusing on polarons has been carried out. The ultra-cold systems offer a number of distinct advantages over their solid-state material counterparts. In particular, with ultra-cold atoms, clean realisations of minimal models, thought to describe solid-state polarons, can be achieved. Additionally, due to the high degree of tunability (using, for instance, Feshbach resonances) novel regimes of polaron physics can be explored with ultra cold gases.This PhD project will investigate polarons in mixtures of ultra-cold gases. It has recently been shown that when the coupling between the atomic species is weak, the system can be described by the so-called Frohlich Hamiltonian [see, for instance, New Journal of Physics, 19, 103035, 2017]. The Frohlich Hamiltonian is a canonical model in condensed matter physics, which describes the coupling between particles and phonons. It is thestarting point for describing standard superconductors. However, when the coupling between the gases is not weak, the Frohlich model ceases to provide an accurate description of the system.In this project, we will use an alternative starting point - the full microscopic Hamiltonian of the coupled system. Many of the basic relations for polarons (like their mass and energy) are phrased in the context of the Frohlich model. Therefore, our first task will be to phrase these in a more general context. Next, we will we will employ the so-called Gross-Pitaevskii mean-field theory to this system. This mean-field theory captures the non-linearities that are absent in the Frohlich model. However, the Gross-Pitaevskii, as it is a mean-field theory, does not provide a full account of the quantum nature of the polaron. To capture such quantum effects, and to assess their importance, we will employ the so-called truncated Wigner expansion.While recent experimental work utilising ultra-cold gases has shown excellent agreement with theory in the weak-coupling regime, there are major outstanding puzzles in the strong-coupling regime For instance, the experimentally measured mass of the polaron in the strong-coupled regime [see, for instance, PRA 85, 023623 (2012)] shows substantial disagreement with theoretical results to date. A major goal of this PhD project is to solve this puzzle.
耦合到量子系统的杂质的动力学代表了一个概念上简单但高度非平凡的物理系统。例如,电子移动通过离子晶格将局部扭曲晶格(由于库仑排斥)。杂质加上局域畸变的组合系统通常被称为极化子。极化子在许多方面都像孤立粒子一样,具有明确的能量和质量,与孤立杂质的能量和质量有很大的不同。极化子在各种凝聚态系统中发挥着重要作用,包括超导体、近藤系统和巨磁阻材料。此外,在理论水平上,极化子本身也很有趣。Ror实例,费曼路径积分的第一个重要应用之一,集中于计算极化子的质量。尽管可以追溯到Frohlich和Feynmann的早期工作,多年的研究,极化子的许多方面仍然没有被理解。为此,在过去的五年中,已经进行了大量的实验工作,使用超冷原子气体聚焦极化子。超冷系统提供了许多明显的优势,超过其固态材料的同行。特别是,用超冷原子,可以实现被认为是描述固态极化子的最小模型的清晰实现。此外,由于高度的可调谐性(例如,使用Feshbach共振),可以用超冷气体探索极化子物理的新机制。这个博士项目将研究超冷气体混合物中的极化子。最近已经表明,当原子种类之间的耦合较弱时,系统可以由所谓的Frohlich Hamilton描述[参见,例如,New Journal of Physics,19,103035,2017]。Frohlich哈密顿量是凝聚态物理学中的一个正则模型,它描述了粒子和声子之间的耦合。它是描述标准超导体的出发点。然而,当气体之间的耦合并不弱时,Frohlich模型不再提供系统的准确描述。在这个项目中,我们将使用另一个出发点-耦合系统的全微观哈密顿量。极化子的许多基本关系(如它们的质量和能量)都是在弗罗利希模型的背景下表述的。因此,我们的第一项任务将是在一个更一般的背景下表述这些问题。接下来,我们将把所谓的Gross-Pitaevskii平均场理论应用于这个系统。这种平均场理论捕捉到了弗罗利希模型中不存在的非线性。然而,由于Gross-Pitaevskii是一个平均场理论,它并没有提供极化子量子性质的完整解释。为了捕捉这种量子效应,并评估它们的重要性,我们将采用所谓的截断维格纳展开。虽然最近的实验工作利用超冷气体已经显示出与理论在弱耦合区的良好一致性,但在强耦合区存在主要的突出难题。例如,实验测量的极化子在强耦合区的质量[见,例如,PRA 85,023623(2012)]显示了与迄今为止的理论结果的实质性分歧。这个博士项目的一个主要目标是解决这个难题。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong-coupling Bose polarons in one dimension: Condensate deformation and modified Bogoliubov phonons
一维强耦合玻色极化子:凝聚态变形和改进的 Bogoliubov 声子
  • DOI:
    10.1103/physrevresearch.2.033142
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jager J
  • 通讯作者:
    Jager J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Conference: 2023 Atomic Physics GRC and GRS:Precision Measurements, Quantum Science and Ultracold Phenomena in Atomic and Molecular Physics
会议:2023原子物理GRC和GRS:原子和分子物理中的精密测量、量子科学和超冷现象
  • 批准号:
    2313762
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spin transport phenomena in ultracold atomic gases
超冷原子气体中的自旋输运现象
  • 批准号:
    RGPIN-2017-03893
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Ultracold atomic systems for storage of quantum information
用于存储量子信息的超冷原子系统
  • 批准号:
    565649-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Quantum technologies with ultracold atoms for atomic clocks, interferometry and quantum simulation
用于原子钟、干涉测量和量子模拟的超冷原子量子技术
  • 批准号:
    2598862
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Supersolid phases of ultracold atomic gas with dipole-dipole interactions
具有偶极-偶极相互作用的超冷原子气体的超固相
  • 批准号:
    21K03422
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum many-body effects in optomechanics with ultracold atomic gases
超冷原子气体光力学中的量子多体效应
  • 批准号:
    21K03421
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin transport phenomena in ultracold atomic gases
超冷原子气体中的自旋输运现象
  • 批准号:
    RGPIN-2017-03893
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Using Atomic Physics to Achieve Strong Electron Coupling in Ultracold Plasmas
RUI:利用原子物理实现超冷等离子体中的强电子耦合
  • 批准号:
    2011335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spin transport phenomena in ultracold atomic gases
超冷原子气体中的自旋输运现象
  • 批准号:
    RGPIN-2017-03893
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical study of nonlinear optical responses of ultracold atomic systems: towards a high-resolution coherent multidimensional spectroscopy investigation of quantum many-body effects
超冷原子系统非线性光学响应的​​理论研究:量子多体效应的高分辨率相干多维光谱研究
  • 批准号:
    19K14638
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了