Analyzing Complex Longitudinal Data in Behavior Sciences
分析行为科学中的复杂纵向数据
基本信息
- 批准号:6717973
- 负责人:
- 金额:$ 27.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Smoking and obesity are two of the leading precursors to adverse health outcomes such as cancer, heart disease, and type-II diabetes, and therefore are a focal point of clinical and public health research on behavior change. Many longitudinal clinical trials in behavioral medicine are designed to effect positive and healthy changes in related behaviors, for example by promoting smoking cessation, exercise, and sensible diets. The analysis and reporting of data from these trials can be complicated by missing data, subject noncompliance with therapy, and loss to follow up. Furthermore, researchers are frequently interested in outcomes beyond the usual simple summaries such as 'quit smoking' (yes/no) or 'average weight change.' Because trials are longitudinal, the data can give insight into the process of behavior change, and can be used to classify different patterns of behavior change. Moreover, the availability of longitudinal data provides the opportunity to develop predictions of eventual outcomes that can be used dynamically in the treatment of certain behaviors. This project will develop innovative approaches to the analysis of longitudinal data specifically for behavioral medicine trials. The first two components of the project will develop latent class and latent variable models for classifying patterns of behavior change in smoking cessation and weight change. For smoking cessation trials in particular, the usual approaches to latent class and random effects modeling are inadequate because the standard assumption that random effects are normal rarely is adequate, and the usual exchangeability assumptions are not typically met in practice. The third aim of the study addresses the issue of informative missing data, presenting a unifying and coherent framework for pattern-mixture modeling and associated sensitivity analyses. This part of the proposed work will tie together several recent proposals for PM modeling of longitudinal data. Finally, our fourth aim will address the important issue of noncompliance by developing both instrumental variable (IV) and G-computation approaches to causal inference. All of our work will be carried out in a Bayesian framework, so a major part of the proposal will be concerned with developing and implementing appropriate algorithms for simulating posterior distributions of fairly complex models. All of the methods will be developed on and applied to data from recently completed or ongoing trials in behavioral medicine, particularly in smoking cessation and weight change, run by recognized leaders in the field.
描述(由申请人提供):吸烟和肥胖是癌症、心脏病和二型糖尿病等不良健康结果的两个主要前兆,因此是行为改变的临床和公共卫生研究的焦点。行为医学的许多纵向临床试验旨在影响相关行为的积极和健康的变化,例如通过促进戒烟、锻炼和合理饮食。这些试验的数据分析和报告可能会因数据缺失、受试者不遵守治疗以及失访而变得复杂。此外,研究人员经常对“戒烟”(是/否)或“平均体重变化”等通常简单总结之外的结果感兴趣。由于试验是纵向的,因此数据可以深入了解行为改变的过程,并可用于对不同的行为改变模式进行分类。此外,纵向数据的可用性提供了对最终结果进行预测的机会,这些预测可以动态地用于治疗某些行为。该项目将开发创新方法来分析专门用于行为医学试验的纵向数据。该项目的前两个组成部分将开发潜在类别和潜在变量模型,用于对戒烟和体重变化的行为变化模式进行分类。特别是对于戒烟试验,潜在类别和随机效应建模的常用方法是不够的,因为随机效应正常的标准假设很少是足够的,并且在实践中通常不满足通常的可交换性假设。该研究的第三个目标解决信息缺失数据的问题,为模式混合建模和相关敏感性分析提供统一且连贯的框架。这部分提议的工作将把最近的几个关于纵向数据 PM 建模的提议结合起来。最后,我们的第四个目标将通过开发因果推理的工具变量(IV)和 G 计算方法来解决不合规的重要问题。我们所有的工作都将在贝叶斯框架中进行,因此该提案的主要部分将涉及开发和实现适当的算法来模拟相当复杂模型的后验分布。所有方法都将根据最近完成或正在进行的行为医学试验的数据开发和应用,特别是由该领域公认的领导者进行的戒烟和体重变化试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH W HOGAN其他文献
JOSEPH W HOGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH W HOGAN', 18)}}的其他基金
Training and Teaching for Transforming Big Data to Knowledge
将大数据转化为知识的培训和教学
- 批准号:
9564195 - 财政年份:2017
- 资助金额:
$ 27.72万 - 项目类别:
Brown Moi Partnership for Biostatistics Training in HIV-NAMBARI
Brown Moi 艾滋病毒-南巴里生物统计学培训合作伙伴
- 批准号:
10374947 - 财政年份:2015
- 资助金额:
$ 27.72万 - 项目类别:
Brown Moi Partnership for Biostatistics Training in HIV-NAMBARI
Brown Moi 艾滋病毒-南巴里生物统计学培训合作伙伴
- 批准号:
10592278 - 财政年份:2015
- 资助金额:
$ 27.72万 - 项目类别:
Brown Moi Partnership for Biostatistics Training in HIV
Brown Moi 艾滋病毒生物统计培训合作伙伴
- 批准号:
9301665 - 财政年份:2015
- 资助金额:
$ 27.72万 - 项目类别:
Brown Moi Partnership for Biostatistics Training in HIV-NAMBARI
Brown Moi 艾滋病毒-南巴里生物统计学培训合作伙伴
- 批准号:
10244720 - 财政年份:2015
- 资助金额:
$ 27.72万 - 项目类别:
Optimizing HIV Treatment Monitoring under Resource Constraints
在资源限制下优化艾滋病毒治疗监测
- 批准号:
9174892 - 财政年份:2014
- 资助金额:
$ 27.72万 - 项目类别:
Optimizing HIV Treatment Monitoring under Resource Constraints
在资源限制下优化艾滋病毒治疗监测
- 批准号:
8847003 - 财政年份:2014
- 资助金额:
$ 27.72万 - 项目类别:
New Approaches to Mediation Analysis using Causal Inference Methods
使用因果推理方法进行中介分析的新方法
- 批准号:
7944130 - 财政年份:2009
- 资助金额:
$ 27.72万 - 项目类别:
New Approaches to Mediation Analysis using Causal Inference Methods
使用因果推理方法进行中介分析的新方法
- 批准号:
7830627 - 财政年份:2009
- 资助金额:
$ 27.72万 - 项目类别:
Analyzing Complex Longitudinal Data in Behavior Sciences
分析行为科学中的复杂纵向数据
- 批准号:
6924609 - 财政年份:2004
- 资助金额:
$ 27.72万 - 项目类别: