Artificial Intelligence and the Useful Art Museum: A Cross-Disciplinary Approach Towards Machine Learning and its Implications in the Museum Sphere

人工智能和有用的艺术博物馆:机器学习的跨学科方法及其在博物馆领域的影响

基本信息

  • 批准号:
    2302434
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposed research will explore the contribution of Artificial Intelligence (AI) to the public art museum. Through practice-based, collaborative research with industry partners in the arts and non-arts sectors, this project will develop knowledge of the role of AI in a cultural environment and understand what impact AI will have on public trust. Specifically, this research will investigate the following key questions:(1) What is the role and potential uses of AI as a curatorial strategy?(2) How can AI be used to interpret and classify existing collections and inform acquisition?(3) In what ways will the use of AI in museums challenge and/or enhance public trust?This research will explore how AI will curate, classify and cluster big data sets, whilst acting as a co-producer of museums, and will discover the implications of new forms of intelligence embedded within museums; asking whether algorithmic outputs are aligned with (new) curatorial strategies, museum stakeholders and cultural policies. This research will question how ML may inform curatorial practice and whether it will introduce bias or as yet unpredictable and currently unknown patterns. This aims to push the art historical discourse beyond common boundaries, gathering knowledge with the help of algorithms and creating new connections between objects, their meanings and their place within museum collections. It is particularly important in the digital humanities 'to contest and transform particular institutional structures' (Bassett et al., 2017), especially as museums have often been seen as institutions where social inequalities have been 'constituted, reproduced and reinforced' (Sandell, 2005). This project will significantly contribute to the field of digital humanities, to critically reflect and understand 'how these technologies operate to structure the world around them, and in doing so transform humanities knowledge and practice' (Berry and Fagerjord, 2017). Furthermore, this research will explore how AI can help to foster the social mission of useful museums for the public - away from a 'disciplinary museum' (Hooper-Greenhill, 1992) towards a diverse museum that is digitally fit and aware of its social responsibilities - being a transparent (Rader et al., 2018) and useful place where audiences/users can gain familiarity with AI, enabling scholars to research interactions and to provide explanations.I propose to undertake practice-based, interdisciplinary and applied research which will explore the research questions through investigation of curatorial practices, exhibition design and display which draw on AI and the properties of ML and algorithms, and of audience responses to art which is (co)-produced with, filtered, mediated or classified by AI technologies.The methodology will involve partnership with museums and with collaborators from the creative industries and other sectors who are working with AI within their research practices, and who are seeking opportunities for public engagement and co-production in which to test these ideas. Partners who have already agreed to join this project are Alistair Hudson, Director of the Manchester City Galleries and the Whitworth, and Prof Richard Taylor, BNFL Chair in Nuclear Energy Systems at the UoM's Dalton Nuclear Institute, which applies AI technologies to support research in nuclear science and is fostering cross-disciplinary research via its BEAM network. Specifically, this project will discover new ways of implementing immersive and AI technologies in a way that will be useful to four main research stakeholder constituencies:Museum sector/non-arts and cultural industrial sectors/academic/the public.BNFL Chair in Nuclear Energy Systems at the University of Manchester's Dalton NuclearInstitute, which applies AI technologies to support research in nuclear science and is fosteringcross-disciplinary research via its BEAM network.
这项拟议的研究将探索人工智能(AI)对公共美术馆的贡献。通过与艺术和非艺术领域的行业合作伙伴进行基于实践的合作研究,该项目将发展关于人工智能在文化环境中的角色的知识,并了解人工智能将对公众信任产生什么影响。具体地说,这项研究将调查以下关键问题:(1)人工智能作为策展策略的作用和潜在用途是什么?(2)人工智能如何用于解释和分类现有藏品并为获取提供信息?(3)在博物馆中使用人工智能将以哪些方式挑战和/或增强公众信任?本研究将探索人工智能如何作为博物馆的联合生产者对大数据集进行管理、分类和集群,并将发现嵌入博物馆的新形式智能的影响;询问算法输出是否与(新的)策展战略、博物馆利益相关者和文化政策保持一致。这项研究将质疑ML如何为策展实践提供信息,以及它是否会引入偏见或迄今不可预测和目前未知的模式。这旨在将艺术历史话语推向共同的边界,借助算法收集知识,并在物品、它们的意义和它们在博物馆藏品中的位置之间建立新的联系。在数字人文科学中,“挑战和改变特定的制度结构”尤其重要(Bassett等人,2017年),特别是因为博物馆经常被视为社会不平等已被“构成、复制和强化”的机构(Sandell,2005)。该项目将对数字人文领域做出重大贡献,批判性地反思和理解“这些技术如何运作来构建他们周围的世界,并通过这样做转变人文知识和实践”(Berry和Fagerjord,2017)。此外,这项研究将探索人工智能如何帮助培养对公众有用的博物馆的社会使命--从一个‘学科博物馆’(Hooper-Greenhill,1992)转向一个与数字相适应并意识到其社会责任的多元化博物馆--成为一个透明的(Rader等人,2018)和有用的地方,在那里观众/用户可以熟悉人工智能,使学者能够研究互动并提供解释。我建议进行基于实践的、跨学科的和应用的研究,通过调查利用人工智能以及ML和算法的特性的策展实践、展览设计和展示来探索研究问题。以及观众对与人工智能技术(共同)制作、过滤、中介或分类的艺术的反应。方法将涉及与博物馆以及创意产业和其他部门的合作者合作,他们在研究实践中与人工智能合作,并寻找机会让公众参与和联合制作,以检验这些想法。已经同意加入该项目的合作伙伴是曼彻斯特城市画廊和惠特沃斯博物馆的主任阿里斯泰尔·哈德森,以及密歇根大学道尔顿核研究所的BNFL核能系统教席理查德·泰勒教授,该研究所应用人工智能技术支持核科学研究,并通过其BEAM网络促进跨学科研究。具体地说,该项目将发现以一种对四个主要研究利益攸关方有用的方式实施沉浸式和人工智能技术的新方法:博物馆部门/非艺术和文化产业部门/学术/公众。曼彻斯特大学道尔顿核研究所核能系统BNFL教席,应用人工智能技术支持核科学研究,并通过其BEAM网络促进跨学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Evaluating Cooperative Intelligence in Connected Communities
职业:评估互联社区中的合作智能
  • 批准号:
    2339497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了