Accelerating innovation in nitrogen removal bioprocesses through the study of the emerging properties of natural microbial communities of nitrifiers.

通过研究硝化菌天然微生物群落的新特性,加速脱氮生物工艺的创新。

基本信息

  • 批准号:
    2326977
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Brief description of the context of the research including potential impact:Nitrogen is a fundamental constituent of any form of life: it is necessary for the synthesis of amino acids (building blocks of proteins) and nucleic acids. Although the atmosphere of Earth is composed of 78% dinitrogen (N2), this cannot be assimilated by plants or animals. For this reason, the nitrogen cycle on Earth is essential to any environment because through biological and geochemical processes all the chemical forms of nitrogen are balanced, promoting the existence of diverse ecosystems. Owing to human activity, the nitrogen cycle is unbalanced in many environments. These include natural water bodies where discharge of domestic and industrial waters happens. More often, favored by the global rise of temperatures, the accumulation of NH4+ and organic forms of nitrogen facilitates the presence of algae blooms that can be toxic to animals and humans. Together, the accumulation of specific nitrogen forms in natural waters reduces their environmental diversity and increases NO and N2O emissions, inducing ozone depletion and contributing to climate change.To balance the nitrogen cycle in the environment, the reduction of nitrogen discharges to water bodies is fundamental. A sustainable way of doing this is using natural microbial communities able to catalyze the transformation of inorganic and organic forms of nitrogen dissolved in water. Bioprocesses aim to control the activity of these communities towards the production of N2 gas. However, the effectiveness of these processes is compromised by our lack of understanding of the microorganisms that control the nitrogen cycle. Before, canonical nitrification was always considered to be carried by two specific functional groups and denitrification by heterotrophic bacteria. However, in the last decades, the knowledge about the biological nitrogen cycle has dramatically change. For instance, the discovery of anaerobic ammonia oxidation (Anammox), the isolation of archaea able to perform ammonia oxidation as ammonia-oxidizing bacteria (AOA and AOB), the isolation of a Nitrospira specie capable to perform the complete ammonia oxidation (Comammox) and the understanding of denitrification and its microbial community have happen in the last 50 years. All this new knowledge permitted the enhance of the biological wastewater treatment process, reducing the emission of N2O and the consumption of oxygen. But also, new scientific questions have raised: How is possible that AOB and AOA co exist in the same environment if both carry out the same biological process? How does this coexistence affect nitrification and denitrification at natural and engineering process? Which is the niche differentiation between AOB and AOA at natural environments?Aims and objectives:The objective of this project is to explore the above scientific questions analyzing the current information in the literature, collecting the kinetic parameters of nitrifiers and developing state-of-the-art mathematical models to describe their growth. These models will study the effect of environmental conditions such as pH, temperature or salinity over the microbial activity and ultimately over the bioengineered process. This theoretical analysis will be verified and validated through experiments developed here at the Division of Water and Environment of the University of Glasgow. The aim will be to accelerate innovation in bioprocesses being able to propose novel solutions for nitrogen removal in water streams (waste or/and drinking water treatments). Novelty of the research methodology:We are going to use comprehensive mathematical models able to describe microbial activity in detail and its impact in the local environment at the microscale level. This will be used to predict the performance of bioprocesses function on controlled operational conditions and the characteristics of the influent treated. These mathematical models
研究背景的简要描述,包括潜在的影响:氮是任何形式的生命的基本组成部分:它是合成氨基酸(蛋白质的组成部分)和核酸所必需的。虽然地球的大气层由78%的二氮(N2)组成,但这不能被植物或动物吸收。因此,地球上的氮循环对任何环境都是必不可少的,因为通过生物和地球化学过程,氮的所有化学形式都是平衡的,促进了不同生态系统的存在。由于人类活动,氮循环在许多环境中是不平衡的。这些包括发生生活和工业沃茨排放的天然水体。更常见的是,由于全球气温上升,NH 4+和有机形式的氮的积累促进了藻类大量繁殖,这对动物和人类都是有毒的。天然沃茨中特定形态氮的积累减少了环境多样性,增加了NO和N2 O的排放,导致臭氧层消耗,并导致气候变化。为了平衡环境中的氮循环,减少氮排放到水体中是至关重要的。一种可持续的方法是使用能够催化溶解在水中的无机和有机形式的氮转化的天然微生物群落。生物过程的目的是控制这些社区的活动,以生产N2气体。然而,由于我们对控制氮循环的微生物缺乏了解,这些过程的有效性受到影响。过去,经典硝化作用一直被认为是由两个特定的功能团进行的,而反硝化作用则是由异养细菌进行的。然而,在过去的几十年里,有关生物氮循环的知识发生了巨大的变化。例如,厌氧氨氧化(Anammox)的发现、能够作为氨氧化细菌进行氨氧化的古菌的分离(AOA和AOB)、能够进行完全氨氧化的硝化螺菌属物种的分离(Comammox)以及对反硝化作用及其微生物群落的理解已经在过去50年中发生。所有这些新知识使得废水生物处理工艺得以改进,减少了N2 O的排放和氧气的消耗。但是,新的科学问题也提出了:如果AOB和AOA都进行相同的生物过程,它们如何可能共存于同一环境中?在自然过程和工程过程中,这种共存对硝化和反硝化有何影响?氨氧化细菌和氨氧化细菌在自然环境中的生态位分化是什么?目的和目标:本项目的目标是探索上述科学问题,分析现有文献中的信息,收集硝化细菌的动力学参数,并开发最先进的数学模型来描述它们的生长。这些模型将研究环境条件,如pH值,温度或盐度对微生物活性的影响,并最终对生物工程过程的影响。这一理论分析将通过格拉斯哥大学水与环境系的实验进行验证和确认。其目的是加速生物工艺的创新,能够提出新的水流脱氮解决方案(废水或/和饮用水处理)。研究方法的新奇:我们将使用全面的数学模型,能够详细描述微生物活动及其在微观层面上对当地环境的影响。这将被用来预测生物工艺功能的性能控制的操作条件和处理的进水的特性。这些数学模型

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale models driving hypothesis and theory-based research in microbial ecology.
  • DOI:
    10.1098/rsfs.2023.0008
  • 发表时间:
    2023-08-06
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
  • 通讯作者:
Competitive and substrate limited environments drive metabolic heterogeneity for comammox Nitrospira.
竞争性和底物有限的环境驱动了Comammox硝基螺旋体的代谢异质性。
  • DOI:
    10.1038/s43705-023-00288-8
  • 发表时间:
    2023-08-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martinez-Rabert, Eloi;Smith, Cindy J.;Sloan, William T.;Gonzalez-Cabaleiro, Rebeca
  • 通讯作者:
    Gonzalez-Cabaleiro, Rebeca
Environmental and ecological controls of the spatial distribution of microbial populations in aggregates.
  • DOI:
    10.1371/journal.pcbi.1010807
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
Biochemistry shapes growth kinetics of nitrifiers and defines their activity under specific environmental conditions.
  • DOI:
    10.1002/bit.28045
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Martinez-Rabert, Eloi;Smith, Cindy J.;Sloan, William T.;Gonzalez-Cabaleiro, Rebeca
  • 通讯作者:
    Gonzalez-Cabaleiro, Rebeca
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

最优证券设计及完善中国资本市场的路径选择
  • 批准号:
    70873012
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
  • 批准号:
    10761295
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
  • 批准号:
    10784165
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Lewis Base Ligands Designed to Control Carbon-Carbon Bond Formation
旨在控制碳-碳键形成的路易斯碱配体
  • 批准号:
    10713775
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Facility Management, Maintenance and Operations Core
设施管理、维护和运营核心
  • 批准号:
    10792751
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
  • 批准号:
    10587508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
  • 批准号:
    10601615
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Global Centers Track 1: Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
全球中心轨道 1:全球清洁能源与环境氮创新中心 (NICCEE)
  • 批准号:
    2330502
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing a High-Flow Acoustofluidic Loading Platform for Research Cell Stabilization in the Anhydrous State
开发用于研究细胞在无水状态下稳定的高流量声流体加载平台
  • 批准号:
    10603701
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Potent and non-toxic rexinoids to prevent non-melanoma skin cancer
开发有效且无毒的类毒素来预防非黑色素瘤皮肤癌
  • 批准号:
    10562891
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了