Engineering the pulmonary epithelium "on a chip" to investigate immune responses to the inhaled external environmental stimuli

“在芯片上”改造肺上皮,以研究对吸入的外部环境刺激的免疫反应

基本信息

  • 批准号:
    2366286
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

According to the World Health Organisation (WHO), it was estimated that 90% of the worldwide population breathes polluted air and can contributed to 4.2 million premature deaths worldwide in 2016 (WHO, 2018). The pulmonary epithelium, being the first line of defence against the external insults, are subjected to mechanical forces and contact with the inhaled agents thus can be frequently injured (Whitsett & Alenghat, 2015). The pulmonary epithelium is well known to participate in the clearance of some foreign particles by trapping them in the mucus produced by mucous cells (mainly goblet cells) and concerted movement of mucus out of the lungs by a group of ciliated cells (Davies & Moores, 2010; Knight & Holgate, 2003). Together with the help of basal cells, the pulmonary epithelium is also able to engage in immune surveillance, initiate an innate immune response and regulate lung fluids and the proximate connective tissue (Deckers et al., 2017; Knight & Holgate, 2003; Loxham, Davies & Blume, 2014). Upon damage or stimulation, the bronchial epithelium can undergo remodelling such as goblet cell hyperplasia, mucus hypersecretion, airway thickening. In addition, an inflammatory response can be initiated by the secretion of proinflammatory cytokines, chemokines specific for innate immune cells and proteases (Knight & Holgate, 2003). In chronic respiratory diseases, chronic or repeated inflammation and chronic airway remodelling are associated with the progression of various respiratory diseases such as asthma and COPD. However, the exact physiological and pathological mechanisms induced by contact of these environmental stimuli in the context of airflow shear stress in human are largely underexplored.Due to the limitations of the available experimental models, a robust model with features mimicking the airflow in the airway lumen is required. Previously, Benam and others (2016) have developed a small airway-on-a-chip which consists of a differentiated alveoli epithelium exposed to flow of air as well as a layer of endothelium and a current of media representing the blood flow. Along with other publications by other groups (not listed here), their predominant research focuses on studying the basal side of the epithelium (e.g. interactions with endothelium to promote neutrophil adherence). But the research on the apical side of the epithelium has been largely ignored. In this project, a pulmonary bronchial epithelium-on-chip model with controlled airflow-based shear stress will be developed to assist in studying the effect of environmental stimuli on the pulmonary epithelium at the tissue level in vitro. The microfluid chip will consist of a differentiated bronchial epithelium supported on a membrane with a 'breathing' or oscillating airflow on its apical side and a media flow on the basal side (Benam et al., 2016). Once successfully established, this model can reliably examine the effect of different levels of shear stress in the airway channel and the effects of individual or combinations of inhaled environmental stimuli. This will provide novel mechanistic insights in the physiological and pathophysiological responses of the airway cells to stimuli such as pollutants. This will be assessed in terms of epithelial barrier permeability, mucus production, cilia function and immunological responses, such as receptor expression as well as cytokine and chemokine production. The design of the microfluidic chips also allows direct imaging to visualise any structural changes of the epithelium as well as real-time cytokine measurements. By closely mimicking the environment that the epithelium cells are exposed to in vivo. This micro-engineered model will hopefully reduce the use of animal models in this field, shed light into organ-level responses to environmental stimuli and contribute to our understanding of the development of chronic respiratory diseases.
据世界卫生组织(WHO)估计,全球90%的人口呼吸受污染的空气,2016年可能导致全球420万人过早死亡(WHO,2018)。肺上皮是抵抗外部侵害的第一道防线,其受到机械力并与吸入剂接触,因此可能经常受伤(惠特塞特& Alenghat,2015)。众所周知,肺上皮通过将一些外来颗粒捕获在由粘液细胞(主要是杯状细胞)产生的粘液中并通过一组纤毛细胞将粘液协同运动出肺来参与一些外来颗粒的清除(Davies & Moores,2010; Knight & Holgate,2003)。在基底细胞的帮助下,肺上皮还能够参与免疫监视,启动先天免疫应答并调节肺液和邻近结缔组织(Deckers等人,2017; Knight & Holgate,2003; Loxham,Davies & Blume,2014)。在损伤或刺激时,支气管上皮可经历重塑,例如杯状细胞增生、粘液分泌过多、气道增厚。此外,炎症反应可以通过分泌促炎细胞因子、对先天免疫细胞特异性的趋化因子和蛋白酶来引发(Knight & Holgate,2003)。在慢性呼吸道疾病中,慢性或反复炎症和慢性气道重塑与各种呼吸道疾病如哮喘和COPD的进展相关。然而,由于现有实验模型的局限性,需要一个具有模拟气道腔中气流特征的鲁棒模型来模拟人体在气流切应力作用下与这些环境刺激接触所引起的生理和病理机制。此前,Benam等人(2016年)开发了一种小型气道芯片,由暴露于气流的分化肺泡上皮以及内皮层和代表血流的介质流组成。沿着其他小组的其他出版物(此处未列出),他们的主要研究集中在研究上皮的基底侧(例如,与内皮的相互作用以促进中性粒细胞粘附)。但对上皮细胞顶侧的研究却被忽视了。在本项目中,将开发一种基于气流剪切应力的肺支气管上皮细胞芯片模型,以协助研究环境刺激对体外组织水平肺上皮细胞的影响。微流体芯片将由支撑在膜上的分化的支气管上皮组成,在其顶侧具有“呼吸”或振荡气流,在基底侧具有介质流(Benam等人,2016年)。一旦成功建立,该模型可以可靠地检查气道通道中不同水平的剪切应力的影响以及吸入环境刺激的单独或组合的影响。这将为气道细胞对污染物等刺激的生理和病理生理反应提供新的机制见解。这将根据上皮屏障渗透性、粘液产生、纤毛功能和免疫应答(如受体表达以及细胞因子和趋化因子产生)进行评估。微流控芯片的设计还允许直接成像以可视化上皮的任何结构变化以及实时细胞因子测量。通过密切模仿上皮细胞在体内暴露的环境。这种微工程模型有望减少该领域中动物模型的使用,揭示器官对环境刺激的反应,并有助于我们了解慢性呼吸道疾病的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

黏液层/细菌被膜双重渗透型抗菌聚多肽纳米载体用于肺部给药治疗慢性阻塞性肺病
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
TRIM25-PHGDH信号轴调控脓毒症肺上皮细胞铁死亡的机制研究
  • 批准号:
    82372151
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
HIF-2α-Snail调节环路在肺血管内皮转化过程中的作用机制研究
  • 批准号:
    81870046
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
Krüppel样因子4在特发性肺纤维化胸膜间皮细胞-肌成纤维细胞表型转化中的作用和机制的研究
  • 批准号:
    81141001
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
HCN4在心房颤动肺静脉电位形成中作用的研究
  • 批准号:
    81000082
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
内源性二氧化硫对低氧性肺血管基质重塑的调节作用及机制
  • 批准号:
    81070111
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
TLRs和Th1/Th2漂移在肺脏对大气污染炎症反应中的地位和作用
  • 批准号:
    81070006
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
艾灸调控肺纤维化大鼠TGF-beta信号通路分子机制研究
  • 批准号:
    30472236
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure-guided engineering to increase respiratory syncytial virus G protein immunogenicity
结构引导工程提高呼吸道合胞病毒G蛋白免疫原性
  • 批准号:
    10521837
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structure-guided engineering to increase respiratory syncytial virus G protein immunogenicity
结构引导工程提高呼吸道合胞病毒G蛋白免疫原性
  • 批准号:
    10624413
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
  • 批准号:
    10353671
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
  • 批准号:
    10540771
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
  • 批准号:
    10224335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
  • 批准号:
    10026363
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
  • 批准号:
    10454853
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
  • 批准号:
    10661783
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Reverse Engineering the Alveolus: From cellular to microenvironment specification during development
对肺泡进行逆向工程:从开发过程中的细胞规范到微环境规范
  • 批准号:
    10215602
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Tissue Engineering Resource Center
组织工程资源中心
  • 批准号:
    10683747
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了