DNA Mismatch and Double-Strand Break Repair

DNA 错配和双链断裂修复

基本信息

项目摘要

The long-term objective is to understand the role of recombination processes and DNA mismatch repair in the ability of cells to survive drug and radiation-induced DNA damage. We have obtained data with various agents with different mechanisms of action suggesting that DNA double-strand breaks are a common denominator in cells exposed to DNA damaging agents. These agents include not only those occurring naturally (nitric oxide), those used in the therapy of neoplastic disease (e.g., cisplatin, streptozotocin) but also genotoxicants in our environment (e.g.,methylating agents). Ionizing radiation is known to produce double-strand breaks directly but the other agents do not. We hypothesize that drug-induced double-strand breaks are formed by replication through DNA containing single-strand nicks produced by repair processes leading to collapse of the replication fork. Recombination mechanisms are required to repair these double-strand breaks and are therefore extremely important for cellular defenses against these agents in combination with other repair pathways and replication restart proteins. To test our hypothesis we propose to use E. coli as a model system as more is known about DNA replication, repair and recombination than any other organism. Furthermore, mutant strains affecting these processes are available only in this organism. DNA mismatch repair is known to sensitize human and E. coli cells to the toxic effects of cisplatin and methylating agents. Indeed tumor cells resistant to these agents have been isolated from patients and shown to be deficient in mismatch repair. We hypothesize that the role of mismatch repair in drug- resistance is because it no longer interferes with recombinational repair of drug-induced damage. The first specific aim will test the hypothesis that double-strand breaks are formed in chromosomal DNA after exposure to nitric oxide, methylating agents and cisplatin using gamma-radiation as the control. We will use physical methods to detect such breaks. In the second aim, a simple recombination assay will be used to monitor the level of double-strand breaks induced by the agents listed above and by gamma radiation. We will also determine the gene products required for drug-induced recombination. The third aim will use a biochemical assay with purified proteins and substrates to test the hypothesis that mismatch repair interferes with recombination. If these experiments support our model, it will open up a new approach to combat tumor cells by targeting recombination proteins.
长期目标是了解重组过程和DNA错配修复在细胞在药物和辐射诱导的DNA损伤中存活的能力中的作用。 我们已经获得了具有不同作用机制的各种试剂的数据,表明DNA双链断裂是暴露于DNA损伤试剂的细胞的共同特征。 这些试剂不仅包括天然存在的那些(一氧化氮),还包括用于治疗肿瘤疾病的那些(例如,顺铂,链脲霉素),而且是我们环境中的遗传毒物(例如,甲基化剂)。 已知电离辐射可直接产生双链断裂,但其他试剂不会。 我们假设药物诱导的双链断裂是通过含有单链切口的DNA复制形成的,这些切口是由修复过程产生的,导致复制叉的崩溃。 修复这些双链断裂需要重组机制,因此与其他修复途径和复制重启蛋白相结合,对于针对这些因子的细胞防御极其重要。 为了验证我们的假设,我们建议使用E。大肠杆菌作为模型系统,因为对DNA复制、修复和重组的了解比任何其他生物都多。 此外,影响这些过程的突变菌株仅在该生物体中可用。 已知DNA错配修复可使人和大肠杆菌致敏。大肠杆菌细胞对顺铂和甲基化剂的毒性作用。 事实上,已经从患者中分离出了对这些药物具有抗性的肿瘤细胞,并且显示其在错配修复中存在缺陷。 我们假设错配修复在耐药性中的作用是因为它不再干扰药物诱导损伤的重组修复。 第一个具体目标将测试的假设,即双链断裂形成后,暴露于一氧化氮,甲基化剂和顺铂使用γ辐射作为对照的染色体DNA。 我们将使用物理方法来检测这种断裂。 在第二个目的中,将使用简单的重组测定来监测由上述试剂和γ辐射诱导的双链断裂的水平。 我们还将确定药物诱导重组所需的基因产物。 第三个目标将使用纯化的蛋白质和底物的生化测定来测试错配修复干扰重组的假设。 如果这些实验支持我们的模型,它将开辟一种通过靶向重组蛋白来对抗肿瘤细胞的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN G. MARINUS其他文献

MARTIN G. MARINUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN G. MARINUS', 18)}}的其他基金

DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    7875074
  • 财政年份:
    2009
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    6469585
  • 财政年份:
    2002
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    7316123
  • 财政年份:
    2002
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    6623697
  • 财政年份:
    2002
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    6765796
  • 财政年份:
    2002
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA Mismatch and Double-Strand Break Repair
DNA 错配和双链断裂修复
  • 批准号:
    7676125
  • 财政年份:
    2002
  • 资助金额:
    $ 27.03万
  • 项目类别:
SPECIFICITY OF MISMATCH REPAIR IN ESCHERICHIA COLI
大肠杆菌错配修复的特异性
  • 批准号:
    2176932
  • 财政年份:
    1985
  • 资助金额:
    $ 27.03万
  • 项目类别:
SPECIFICITY OF MISMATCH REPAIR IN ESCHERICHIA COLI
大肠杆菌错配修复的特异性
  • 批准号:
    2176933
  • 财政年份:
    1985
  • 资助金额:
    $ 27.03万
  • 项目类别:
SPECIFICITY OF MISMATCH REPAIR IN ESCHERICHIA COLI
大肠杆菌错配修复的特异性
  • 批准号:
    3282671
  • 财政年份:
    1985
  • 资助金额:
    $ 27.03万
  • 项目类别:
SPECIFICITY OF MISMATCH REPAIR IN ESCHERICHIA COLI
大肠杆菌错配修复的特异性
  • 批准号:
    3282672
  • 财政年份:
    1985
  • 资助金额:
    $ 27.03万
  • 项目类别:

相似海外基金

Determining the role of the prolyl cis-trans isomerase Cyclophilin A in DNA Repair at stalled DNA replication forks.
确定脯氨酰顺反异构酶亲环蛋白 A 在停滞 DNA 复制叉处的 DNA 修复中的作用。
  • 批准号:
    MR/T012978/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Research Grant
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Discovery Grants Program - Individual
Global regulation of DNA replication, transcription and DNA repair by Rif1 protein
Rif1 蛋白对 DNA 复制、转录和 DNA 修复的全局调控
  • 批准号:
    25840081
  • 财政年份:
    2013
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Discovery Grants Program - Individual
An investigation of DNA repair processes during DNA replication using the archaeon, Sulfolobus, as a model organism.
使用古细菌 Sulfolobus 作为模式生物,研究 DNA 复制过程中的 DNA 修复过程。
  • 批准号:
    G0701443/1
  • 财政年份:
    2009
  • 资助金额:
    $ 27.03万
  • 项目类别:
    Fellowship
DNA replication, DNA repair and microsatellite stability
DNA 复制、DNA 修复和微卫星稳定性
  • 批准号:
    6993555
  • 财政年份:
    2005
  • 资助金额:
    $ 27.03万
  • 项目类别:
DNA replication, DNA repair and microsatellite stability
DNA 复制、DNA 修复和微卫星稳定性
  • 批准号:
    7535534
  • 财政年份:
    2005
  • 资助金额:
    $ 27.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了