Viral DNA and RNA Ligases

病毒 DNA 和 RNA 连接

基本信息

  • 批准号:
    6966522
  • 负责人:
  • 金额:
    $ 33.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Breaks in the phosphodiester backbone of DNA and essential RNA molecules can lead to cell death if not repaired. This project aims to illuminate the mechanisms and structures of the DNA ligase and RNA ligase enzymes that rectify such breaks. Polynucleotide ligases catalyze the joining of a 5'-PO4 strand to a 3'-OH end via 3 chemical steps: (i) ligase reacts with ATP or NAD+ to form a covalent ligase-adenylate intermediate and release pyrophosphate or NMN; (ii) AMP is transferred from the ligase to the 5'-PO4 DNA or RNA strand to form a DNA/RNA-adenylate intermediate (AppDNA or AppRNA); (iii) ligase catalyzes attack by the 3'-OH of the nick on AppDNA or AppRNA to form a phosphodiester and release AMP. Our long-range goals are to understand how ligase reaction chemistry is catalyzed and how ligases recognize "damaged" DNA or RNA ends. We are approaching these problems using a eukaryotic virus-encoded DNA ligase (Chlorella virus DNA ligase), a bacterial NAD+-dependent DNA ligase (E. coli LigA), and a bacteriophage ATP-dependent RNA ligase (T4 Rnl2) as models. Rnl2 was discovered by this laboratory during the previous funding period and quickly developed into a model-of-choice for RNA repair enzymology. Rnl2 exemplifies a new and growing family of RNA ligases found in all phylogenetic domains. Our studies, which integrate biochemistry, molecular genetics, and structural biology, have revealed mechanistic principles shared by all DNA and RNA ligases, as well as the unique structural features and substrate specificities that distinguish the various branches of the polynucleotide ligase superfamily. In particular, our work indicates that progression through the sequential steps of the ligation pathway is coupled to large protein domain movements and serial remodeling of the active site. Specific aims of this proposal are: (1) To identify the functional groups of Chlorella virus DNA ligase, E. coli LigA, and T4 Rnl2 that contribute to DNA/RNA recognition and nucleotidyl transfer; (2) To biochemically define the interface between ligase-adenylate and nicked DNA/RNA substrates; and (3) To determine atomic structures of ligase-adenylate bound at a DNA/RNA nick and of ligases bound to the 5'-adenylated polynucleotide intermediate.
描述(由申请人提供):如果不修复,DNA和必需RNA分子磷酸二酯骨架的断裂可导致细胞死亡。本项目旨在阐明纠正这种断裂的DNA连接酶和RNA连接酶的机制和结构。多核苷酸连接酶通过3个化学步骤催化5 '-PO 4链与3'-OH末端的连接:(i)连接酶与ATP或NAD+反应以形成共价连接酶-腺苷酸中间体并释放焦磷酸或NMN;(ii)AMP从连接酶转移到5 '-PO 4 DNA或RNA链以形成DNA/RNA-腺苷酸中间体(iii)连接酶催化AppDNA或AppRNA上切口的3 '-OH攻击以形成磷酸二酯并释放AMP。我们的长期目标是了解连接酶化学反应是如何催化的,以及连接酶如何识别“受损”的DNA或RNA末端。我们正在使用真核病毒编码的DNA连接酶(小球藻病毒DNA连接酶),细菌NAD+依赖性DNA连接酶(E。coliLigA)和噬菌体ATP依赖性RNA连接酶(T4 Rnl 2)作为模型。Rnl 2是由该实验室在之前的资助期间发现的,并迅速发展成为RNA修复酶学的首选模型。Rnl 2是在所有系统发育域中发现的一个新的和不断增长的RNA连接酶家族。我们的研究,整合生物化学,分子遗传学和结构生物学,揭示了所有DNA和RNA连接酶共享的机械原理,以及独特的结构特征和底物特异性,区分多核苷酸连接酶超家族的各个分支。特别是,我们的工作表明,通过连接途径的连续步骤的进展耦合到大的蛋白质结构域的运动和活性位点的连续重塑。 具体目的是:(1)鉴定小球藻病毒DNA连接酶的功能基团。coli LigA和T4 Rnl 2,它们有助于DNA/RNA识别和核苷酸转移;(2)生物化学地确定连接酶-腺苷酸和有切口的DNA/RNA底物之间的界面;和(3)确定结合在DNA/RNA切口处的连接酶-腺苷酸和结合至5 '-腺苷酸化的多核苷酸中间体的连接酶的原子结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stewart H Shuman其他文献

Stewart H Shuman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stewart H Shuman', 18)}}的其他基金

Mechanisms of DNA and RNA transactions
DNA 和 RNA 交换的机制
  • 批准号:
    9922973
  • 财政年份:
    2018
  • 资助金额:
    $ 33.48万
  • 项目类别:
Mechanisms of DNA and RNA Transactions
DNA 和 RNA 交易的机制
  • 批准号:
    10618537
  • 财政年份:
    2018
  • 资助金额:
    $ 33.48万
  • 项目类别:
Mechanisms of DNA and RNA transactions
DNA 和 RNA 交换的机制
  • 批准号:
    10395493
  • 财政年份:
    2018
  • 资助金额:
    $ 33.48万
  • 项目类别:
STRUCTURAL STUDIES OF BACTERIAL RNA-BASED PHAGE RESPONSE
基于细菌 RNA 的噬菌体反应的结构研究
  • 批准号:
    8169324
  • 财政年份:
    2010
  • 资助金额:
    $ 33.48万
  • 项目类别:
Vaccina Virus DNA Topoisomerase
疫苗病毒 DNA 拓扑异构酶
  • 批准号:
    7989253
  • 财政年份:
    2009
  • 资助金额:
    $ 33.48万
  • 项目类别:
FASEB Summer Research Conference - POXVIRUSES
FASEB 夏季研究会议 - 痘病毒
  • 批准号:
    7113516
  • 财政年份:
    2006
  • 资助金额:
    $ 33.48万
  • 项目类别:
Novel Targets for Treatment of Smallpox
天花治疗的新靶点
  • 批准号:
    6654477
  • 财政年份:
    2002
  • 资助金额:
    $ 33.48万
  • 项目类别:
Novel Targets for Treatment of Smallpox
天花治疗的新靶点
  • 批准号:
    6561451
  • 财政年份:
    2002
  • 资助金额:
    $ 33.48万
  • 项目类别:
Chlorella Virus DNA Ligase: Structure and Mechanism
小球藻病毒 DNA 连接酶:结构和机制
  • 批准号:
    6616101
  • 财政年份:
    2001
  • 资助金额:
    $ 33.48万
  • 项目类别:
Chlorella Virus DNA Ligase: Structure and Mechanism
小球藻病毒 DNA 连接酶:结构和机制
  • 批准号:
    6526107
  • 财政年份:
    2001
  • 资助金额:
    $ 33.48万
  • 项目类别:

相似海外基金

DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
  • 批准号:
    10748479
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
CAREER: Mechanisms and consequences of epigenome-recruited DNA repair systems in plants
职业:植物中表观基因组招募的 DNA 修复系统的机制和后果
  • 批准号:
    2338236
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
Multifaceted regulation of the DNA repair machinery and suppression of aberrant transcription by telomere proteins
DNA 修复机制的多方面调控和端粒蛋白异常转录的抑制
  • 批准号:
    2246561
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Elucidation of the molecular link between DNA repair and mitochondrial nucleic acid metabolism
阐明DNA修复和线粒体核酸代谢之间的分子联系
  • 批准号:
    23K07078
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DNA Repair State Machines
DNA 修复状态机
  • 批准号:
    EP/X027406/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Structural studies for understanding the mechanism of DNA repair in chromatin
了解染色质 DNA 修复机制的结构研究
  • 批准号:
    23H05475
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
  • 批准号:
    10550045
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
  • 批准号:
    10734425
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
A role of balanced sex hormone in DNA repair in human melanocytes
平衡性激素在人类黑素细胞 DNA 修复中的作用
  • 批准号:
    10666307
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了