Knowledge Representation in Transfer Optimisation System and Applications for Highly Configurable Software Systems
传输优化系统中的知识表示及高度可配置软件系统的应用
基本信息
- 批准号:2404317
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project plan to develop transfer optimisation algorithms that combines the idea between nature-inspired optimisation and transfer learning to equip an optimisation algorithm with adequate intelligence thus lead to a self-adaptive behaviour. To this end, the research will focus on one of the key questions to the endeavour of transfer optimisation, i.e., the knowledge representation and metrics used to evaluate and compare the similarity between different "experience" learned from the previous optimisation process. By doing so, it is able to overcome the negative transfer which brings disasters to transfer irrelevant or useless knowledge across tasks.We will start from graph theory given that graph is a general but powerful representation to various structures. In this case, we envisage that it is able to be the building block for knowledge representation for various landscapes. Representation learning techniques, which learn the intrinsic structure and representation of the data to facilitate useful information extraction, will be developed to understand the problem features from the representation of the fitness landscape itself. As for continuous variables, I will study to use reconstruction-based approaches that learns a parametric mapping from observed data to a representation like the autoencoder framework. For discrete variables, I will study to represent the fitness landscape as an information network. Then network representation learning approaches will be developed to learn a latent low-dimensional representations of network vertices while preserving network topology structure. In order to measure the similarity between different knowledge, I will develop some metrics to serve the quantitative evaluation. This is essentially related to the way how the knowledge is represented.For the knowledge represented as a low-dimensional encoder, I will evaluate similarity based on standard distance measures like Euclidean distance. For the knowledge represented as an information network, I will study from the graph matching perspective [2] and to develop similarity functions to measure the structural similarity between different networks.Once the knowledge representation and similarity measure are developed. I will study how to use them within nature-inspired computation to come up with a transfer optimisation algorithm.Many transfer learning techniques in the machine learning literature [5] are able to serve the purpose of transfer learning. In particular, I will consider two levels of knowledge transfer. One is genetic-level which aims to leverage the optima found in the previous optimisation exercises to accelerate the underlying optimisation. The other one is model level which is going to use transfer learning techniques to align the models across various tasks.The transfer optimisation algorithms developed in this project will be applied to optimise the non-functional performance of highly configurable software systems. Modern industrial software systems are super complex with many configuration options, the setting of which is directly related to their non-functional performance. It is arguable that those systems are too complex to be manually configured in order to achieve their peak performance at runtime under various environments and different user requirements. It is also time consuming to evaluate the non-functional performance of the underlying system when it incurs the throughput of huge volume of data. Building a surrogate to understand and predict the effect of a configuration option is promising alternative to enable the optimisation of a self-adaptive software system at runtime. More specifically, the knowledge representation developed in this PhD project will serve the purpose of surrogate modelling whilst the transfer optimisation will be used to learn and accumulate knowledge through optimisation.
该项目计划开发转移优化算法,将自然启发的优化和转移学习之间的思想结合起来,为优化算法配备足够的智能,从而实现自适应行为。为此,研究将集中在传输优化努力的关键问题之一,即,用于评估和比较从先前优化过程中学习到的不同“经验”之间的相似性的知识表示和度量。通过这样做,它能够克服负迁移带来的灾难跨任务转移无关或无用的知识。我们将从图论开始,因为图是一个通用的,但强大的表示各种结构。在这种情况下,我们设想它能够成为各种景观的知识表示的构建块。表示学习技术,学习数据的内在结构和表示,以促进有用的信息提取,将被开发来理解问题的功能,从健身景观本身的表示。至于连续变量,我将研究使用基于重构的方法,从观察到的数据学习参数映射到自动编码器框架等表示。对于离散变量,我将研究将适应度景观表示为信息网络。然后,网络表示学习方法将被开发来学习一个潜在的低维表示的网络顶点,同时保持网络拓扑结构。为了度量不同知识之间的相似性,我将开发一些度量标准来服务于定量评估。这本质上与知识的表示方式有关。对于表示为低维编码器的知识,我将基于标准距离度量(如欧几里得距离)来评估相似性。对于表示为信息网络的知识,从图匹配的角度[2]进行研究,建立相似度函数来度量不同网络之间的结构相似性。我将研究如何在自然启发的计算中使用它们来提出迁移优化算法。机器学习文献中的许多迁移学习技术[5]都能够达到迁移学习的目的。具体来说,我将考虑两个层次的知识转移。一个是遗传级,旨在利用在以前的优化练习中发现的最优值来加速底层优化。另一个是模型级,它将使用迁移学习技术来调整不同任务之间的模型。本项目中开发的迁移优化算法将用于优化高度可配置软件系统的非功能性能。现代工业软件系统非常复杂,有许多配置选项,其设置直接关系到其非功能性能。可以肯定的是,这些系统过于复杂,无法手动配置,以便在各种环境和不同的用户需求下在运行时实现其最佳性能。当底层系统需要处理大量数据时,评估其非功能性性能也是非常耗时的。构建一个代理来理解和预测配置选项的效果是一个有前途的替代方案,使自适应软件系统在运行时的优化。更具体地说,在这个博士项目中开发的知识表示将服务于代理建模的目的,而传输优化将用于通过优化来学习和积累知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Research Grant
Achieving true representation of Indigenous people in nursing and midwifery
在护理和助产方面实现原住民的真实代表
- 批准号:
IN230100003 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Indigenous
Justice in a Changing Climate? Inclusion and Representation in Environmental Expertise
气候变化中的正义?
- 批准号:
ES/Y007972/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spatial representation and updating using a standing locomotion device
使用站立式运动设备进行空间表示和更新
- 批准号:
24K06616 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Digitize and Simulate the Large Physical World via Knowledge-Grounded Scene Representation
职业:通过基于知识的场景表示对大型物理世界进行数字化和模拟
- 批准号:
2340254 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant