Extremal properties of randomly perturbed structures

随机扰动结构的极值特性

基本信息

  • 批准号:
    2426384
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The classical way to investigate the behaviour of algorithms from a theoretical perspective is worst-case analysis where we seek to find a bound on the runtime of an algorithm that holds for any input. However, many algorithms work well in practice while performing badly in the worst cases. This initiated average-case analyses where we look at the expected runtime under a suitable probability distribution of the inputs. The so-called smoothed analysis (see [1]) aims to unite the advantages of these two approaches by combining them: Here we measure the maximum over all inputs of the expected performance on slight random perturbations of these inputs.This type of analysis has for example been used for Local Search for the Maximum-Cut Problem: For a graph G with edge weights the weight of a cut (V_1,V_2) is the total weight of the edges between V_1 and V_2. The FLIP algorithm starts with an arbitrary cut and iteratively increases the weight by moving one vertex to the other part, until no more improvements are possible when we reach a locally optimal cut. This algorithm has been shown to take an exponential number of steps in the worst case but performed better in practice. The latter may be explained by better bounds in different variants of smoothed analysis [2, 3] and it is an open question whether one can actually obtain a polynomial bound in the setting of [3].Smoothed analysis is one area that could potentially be impacted by the study of the model of randomly perturbed graphs which combines deterministic and probabilistic elements in a very similar way. We want to further the understanding of this model in which we start with an arbitrary dense graph and adds edges in a random manner.Just as in the classical binomial random graph model G(n,p), we are typically interested in finding threshold functions p=p(n) for a graph property A. Given d>0, p is a threshold if, as n goes to infinity, min P(G \cup G(n,p'(n)) satisfies A) tends to 1 for p'=w(p) and to 0 for p'=o(p) where the minimum is taken over all n-vertex graphs G with edge density d or, in a more restrictive version, all G with minimum degree dn.Thresholds for numerous properties have recently been established. Many of these were concerned with embedding spanning subgraphs such as (powers of) Hamilton cycles or more general bounded degree graphs. For instance, the following universality question [4] is unsolved for D>2: What is the threshold for G \cup G(n,p) to contain all spanning subgraphs with maximum degree D simultaneously? Ramsey properties of this model have been investigated as well [5, 6, 7]. Given graphs F, H and G we write G->(F,H) if every red-blue colouring of the edges of G admits a red copy of F or a blue copy of H. Analogously G->(F,H)^v if the same holds for colourings of the vertices of G. We are then interested in thresholds for the properties G \cup G(n,p)->(F,H) and G\cup G(n,p)->(F,H)^v. These have been established for certain combinations of prominent F and H such as cliques and cycles. However, the general case of these problems remains unsolved; next steps might include resolving the last remaining case involving only cliques, G(n,p)->(K_4,K_t) for t>4, and the general case for vertex colourings. This project falls within the EPSRC Logics and Combinatorics research area.
从理论角度研究算法行为的经典方法是最坏情况分析,我们试图找到适用于任何输入的算法运行时的边界。然而,许多算法在实践中表现良好,而在最坏的情况下表现不佳。这是初始的平均情况分析,我们在输入的适当概率分布下查看预期运行时。所谓的平滑分析(见[1])旨在通过结合这两种方法来统一它们的优点:在这里,我们测量在这些输入的轻微随机扰动下预期性能的所有输入的最大值。例如,这种类型的分析已用于局部搜索最大切割问题:对于具有边权的图G,切割(V_1,V_2)的权值是V_1和V_2之间的边的总权值。FLIP算法从一个任意的切割开始,通过将一个顶点移动到另一个顶点来迭代地增加权重,直到我们达到局部最优切割时没有更多的改进可能。该算法已被证明在最坏的情况下采取指数级的步骤,但在实践中表现得更好。后者可以用光滑分析的不同变体中更好的界来解释[2,3],是否可以在[3]的设置中实际获得多项式界是一个悬而未决的问题。平滑分析是一个可能受到随机摄动图模型研究影响的领域,随机摄动图以非常相似的方式结合了确定性和概率元素。我们希望进一步理解这个模型,在这个模型中,我们从一个任意密集的图开始,并以随机的方式添加边。就像在经典的二项随机图模型G(n,p)中一样,我们通常感兴趣的是寻找图属性a的阈值函数p=p(n)。给定d>0, p是一个阈值,如果当n趋于无穷时,min p(G \cup G(n,p'(n))满足a)趋于1,p' =o(p)趋于0,其中最小值取于所有边密度为d的n顶点图G,或者在更严格的版本中,所有最小度为dn的G。最近建立了许多属性的阈值。其中很多都是关于嵌入生成子图的,比如汉密尔顿循环的幂,或者更一般的有界度图。例如,下面的普遍性问题[4]对于D>2是未解的:G \cup G(n,p)同时包含所有最大度为D的生成子图的阈值是多少?该模型的Ramsey性质也被研究过[5,6,7]。给定图F,H和G,我们写G->(F,H),如果G的每条边的红蓝着色都允许F的红拷贝或H的蓝拷贝。类似地,G->(F,H)^v,如果G的顶点的着色也是如此,那么我们感兴趣的是性质G\cup G(n,p)->(F,H)和G\cup G(n,p)->(F,H)^v的阈值。这些已经被建立为某些显著的F和H的组合,如团和循环。然而,这些问题的一般情况仍未得到解决;接下来的步骤可能包括解决最后剩下的只涉及团的情况,G(n,p)->(K_4,K_t) for t b> 4,以及顶点着色的一般情况。该项目属于EPSRC逻辑学和组合学研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了