Molecular Mechanisms of Na Channel Slow Inactivation

Na通道缓慢失活的分子机制

基本信息

  • 批准号:
    6703813
  • 负责人:
  • 金额:
    $ 16.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-30 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Inactivation of voltage-gated Na channels is a critically important determinant of the ability of an excitable membrane to transmit an action potential. Fast-inactivation of Na channels occurs over a time course of milliseconds and in part limits the duration of the action potential. A more prolonged form of inactivation, so-called slow inactivation, takes place over several hundred milliseconds and may serve to regulate the excitability of the membrane by limiting the number of Na channels available to participate in the upstroke of an action potential. Recent studies have implicated derangements of slow inactivation in human diseases such as Hyperkalemic Periodic Paralysis. Whereas the structures that participate in fast inactivation are well described, the nature and location of the slow inactivation gating mechanism remains poorly understood. Better understanding of these structures may provide a basis for more rational therapies for disorders of membrane excitability. In our initial proposal we outlined our plan to define those regions of the Na channel that participate in slow inactivation, by examining both regions that may act as the pore-occluding "gate," as well as those structures which may confer voltage sensitivity to slow inactivation. Since our submission, several lines of evidence have emerged and led to the as-yet untested proposal that a collapse near the external face of the ion-conducting pore impedes Na current during slow inactivation. We have tested this hypothesis and have generated evidence that the outer mouth of the Na permeation pathway remains open while the channel is slow inactivated. [This resubmission for a two-year extension has three Specific Aims: 1) To test the hypothesis that some or all of the S4 voltage sensors are immobilized in the outward position during slow inactivation. (2) To test the hypothesis that slow inactivation gating involves conformational shifts in the cytoplasmic portion of the pore, rather than the external pore region as previously hypothesized. 3) To characterize slow inactivation gating of wild-type and disease-associated mutant channels during trains of brief repetitive depolarizations, which will provide greater insight on the physiological relevance of slow inactivation. The long-range career plan of the applicant is to combine the electrophysiological approaches of the on-going work with his former training in cellular and molecular biology to investigate disorders of excitability in neurological disease. The additional two years of training are required to make the transition from being merely acquainted with the techniques of electrophysiology to having the experience to set-up and direct a research program for which electrophysiological techniques are an integral component.]
描述(由申请人提供):电压门控钠通道的失活是可兴奋膜传递动作电位能力的关键决定因素。钠通道的快速失活发生在毫秒的时间过程中,并部分限制了动作电位的持续时间。一种更长时间的失活形式,即所谓的缓慢失活,发生在数百毫秒以上,可能通过限制可用于参与动作电位上冲的钠通道的数量来调节膜的兴奋性。最近的研究表明,诸如高钾性周期性麻痹等人类疾病中存在缓慢失活的紊乱。虽然参与快速失活的结构得到了很好的描述,但缓慢失活门控机制的性质和位置仍然知之甚少。更好地了解这些结构可能为更合理地治疗膜兴奋性障碍提供基础。在我们最初的提案中,我们概述了我们的计划,通过检查两个可能充当孔隙闭塞“门”的区域以及那些可能赋予电压敏感性的结构来定义参与缓慢失活的Na通道区域。自我们提交以来,已经出现了几条证据,并导致了迄今未经检验的提议,即离子传导孔外表面附近的坍塌在缓慢失活期间阻碍了钠电流。我们已经验证了这一假说,并产生了证据表明,钠渗透途径的外口保持开放,而通道缓慢失活。[这项延期两年的重新提交有三个具体目标:1)测试S4电压传感器在缓慢失活期间部分或全部固定在向外位置的假设。(2)检验缓慢失活门控涉及孔的细胞质部分的构象移动的假设,而不是先前假设的外部孔区域的构象移动。3)表征在短暂重复去极化过程中野生型和疾病相关突变通道的缓慢失活门控,这将为更好地了解缓慢失活的生理相关性提供更好的见解。申请人的长期职业计划是将正在进行的工作的电生理方法与他以前在细胞和分子生物学方面的培训相结合,以研究神经疾病中的兴奋性障碍。需要额外两年的培训,以便从仅仅熟悉电生理学技术过渡到具有建立和指导电生理技术是其组成部分的研究方案的经验。]

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARIE F STRUYK其他文献

ARIE F STRUYK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARIE F STRUYK', 18)}}的其他基金

MOLECULAR MECHANISMS OF SODIUM CHANNEL SLOW INACTIVATION
钠通道缓慢失活的分子机制
  • 批准号:
    6357601
  • 财政年份:
    1999
  • 资助金额:
    $ 16.92万
  • 项目类别:
Molecular Mechanisms of Na Channel Slow Inactivation
Na通道缓慢失活的分子机制
  • 批准号:
    6837667
  • 财政年份:
    1999
  • 资助金额:
    $ 16.92万
  • 项目类别:
MOLECULAR MECHANISMS OF NA CHANNEL SLOW INCACTIVATION
NA通道缓慢失活的分子机制
  • 批准号:
    6188230
  • 财政年份:
    1999
  • 资助金额:
    $ 16.92万
  • 项目类别:
MOLECULAR MECHANISMS OF SODIUM CHANNEL SLOW INACTIVATION
钠通道缓慢失活的分子机制
  • 批准号:
    6027301
  • 财政年份:
    1999
  • 资助金额:
    $ 16.92万
  • 项目类别:
MOLECULAR MECHANISMS OF NA CHANNEL SLOW INCACTIVATION
NA通道缓慢失活的分子机制
  • 批准号:
    6393179
  • 财政年份:
    1999
  • 资助金额:
    $ 16.92万
  • 项目类别:

相似海外基金

Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
  • 批准号:
    10537799
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
  • 批准号:
    10679938
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
  • 批准号:
    10646759
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Exploring regulatory mechanisms of glyoxalase-1
探索乙二醛酶-1的调控机制
  • 批准号:
    10646721
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
  • 批准号:
    10643012
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
LRRK2 and oxidative stress in Parkinson’s disease
LRRK2 与帕金森病的氧化应激
  • 批准号:
    10799999
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
The role of S-glutathione in regulating cardiac myosin binding protein-C function
S-谷胱甘肽在调节心肌肌球蛋白结合蛋白-C功能中的作用
  • 批准号:
    10749281
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Real Time Metabolic Imaging to Interrogate Early Detection and Prevention of Pancreatic Cancer
实时代谢成像探讨胰腺癌的早期检测和预防
  • 批准号:
    10744576
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
Defining cell intrinsic and extrinsic regulators of ferroptosis in pancreatic cancer
定义胰腺癌铁死亡的细胞内在和外在调节因子
  • 批准号:
    10679812
  • 财政年份:
    2023
  • 资助金额:
    $ 16.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了