Exploring regulatory mechanisms of glyoxalase-1

探索乙二醛酶-1的调控机制

基本信息

  • 批准号:
    10646721
  • 负责人:
  • 金额:
    $ 23.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT ABSTRACT Methylglyoxal (MG) is a potent intracellular glycating agent that forms advanced glycation endproducts. Formed spontaneously from 3-carbon glycolytic intermediates, MG rapidly glycates proteins and nucleotides, damages mitochondria and directly increases reactive oxygen species production; thus inducing a pro-oxidant state and senescent-like condition. MG and the related glyoxalase enzymatic defense system are emerging as critical players in aging and age-related disease processes. Under physiologic conditions MG is rapidly detoxified by glyoxalase 1 (GLO1). However, when GLO1 is attenuated, MG flux is increased and MG-modified proteins accumulate (termed dicarbonyl stress), both within and outside the cell. Dicarbonyl stress promotes glucose intolerance, oxidative stress and inflammation. The mechanisms regulating GLO1 protein stability and enzymatic activity in skeletal muscle tissue, a tissue critical to glucose metabolism, are not well studied and there is a critical need to understand the functional consequences of reduced GLO1 in the context of obesity, aging and age- related disease. GLO1 is critical to cellular function and subject to numerous posttranslational modifications (PTMs) that regulate GLO1 protein stability and activity. Our objective is to establish robust translational models to delineate the mechanisms by which GLO1 is regulated to better understand the functional consequences of attenuated GLO1. The generation of new, state-of-the-art translational models will help to accelerate the understanding of GLO1 attenuation and dicarbonyl stress and the implications for skeletal muscle health across both the life-span and health-span. We aim to establish the functional relevance of both GLO1 loss and the impact of PTMs of GLO1 in human myotubes. Our approach is to attenuate GLO1 and mutate critical amino acid residues using CRISPR gene editing technology, coupled with measures of dicarbonyl stress. We expect to identify a novel, muscle specific mechanism of GLO1 dysregulation and methylglyoxal-mediated damage. The successful completion of this work will have an important positive impact on advancing the understanding, and provide potential therapeutic targets, to maintain skeletal muscle function with aging and age-related disease.
项目摘要 甲基乙二醛(MG)是一种有效的细胞内糖化剂,可形成晚期糖基化终产物。形成 自发地从3-碳糖酵解中间体,MG迅速地使蛋白质和核苷酸变性, 线粒体,并直接增加活性氧的产生;从而诱导促氧化状态, 类似衰老的状况MG和相关的glycoprotein酶的酶防御系统正在成为关键 参与衰老和与年龄相关的疾病过程。在生理条件下,MG通过以下途径迅速解毒: glycoproteinase 1(GLO1)。然而,当GLO 1减弱时,MG通量增加,MG修饰的蛋白质, 积累(称为二羰基应激),在细胞内外。二羰基应激促进葡萄糖 不耐受、氧化应激和炎症。调节GLO 1蛋白稳定性和酶促作用的机制 骨骼肌组织是葡萄糖代谢的关键组织,其活性尚未得到很好的研究, 需要了解GLO 1减少在肥胖、衰老和年龄背景下的功能后果- 相关疾病。GLO 1对细胞功能至关重要,并受到许多翻译后修饰 (PTMs)调节GLO 1蛋白的稳定性和活性。我们的目标是建立稳健的翻译模型 描述GLO 1的调节机制,以更好地了解GLO 1的功能后果。 减毒GLO 1。新的、最先进的翻译模型的产生将有助于加速 了解GLO 1衰减和二羰基应激以及对骨骼肌健康的影响, 寿命和健康寿命。我们的目标是建立GLO 1缺失和细胞凋亡的功能相关性。 人肌管中GLO 1的PTM的影响。我们的方法是减弱GLO 1并突变关键氨基酸 使用CRISPR基因编辑技术,结合二羰基应激措施,我们期望 鉴定GLO 1失调和甲基甘氨酸介导损伤的新的肌肉特异性机制。的 这项工作的顺利完成将对促进谅解产生重要的积极影响, 提供潜在的治疗靶点,以维持骨骼肌功能与衰老和年龄相关疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JACOB M HAUS其他文献

JACOB M HAUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JACOB M HAUS', 18)}}的其他基金

Strategies and functional outcomes of enhancing in vivo production of soluble rage isoforms
增强可溶性愤怒亚型体内产生的策略和功能结果
  • 批准号:
    9505899
  • 财政年份:
    2016
  • 资助金额:
    $ 23.4万
  • 项目类别:

相似海外基金

Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
  • 批准号:
    EP/Y000331/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
  • 批准号:
    10677295
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
  • 批准号:
    10635599
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
  • 批准号:
    10752320
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
  • 批准号:
    478927
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
  • 批准号:
    10855703
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
  • 批准号:
    10654210
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
  • 批准号:
    10733915
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
  • 批准号:
    10667952
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
  • 批准号:
    10726986
  • 财政年份:
    2023
  • 资助金额:
    $ 23.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了