Cox rings of quiver varieties
箭袋品种的考克斯环
基本信息
- 批准号:2439936
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project aims to calculate generators for the Cox ring of quiver flag varieties, with a view tounderstanding degenerations of quiver flag varieties and applications in mirror symmetry.Quiver flag varieties provide a special class of varieties that generalise flag varieties of type A. Given the choice of anacyclic quiver with a unique source and a dimension vector, a natural GIT construction produces a quiver flag variety.Every such variety is a smooth Mori Dream Space that can be obtained as an iterative tower of Grassmann bundlesover a point. They provide natural ambient spaces in algebraic geometry and were used recently by Kalashnikov toproduce many new examples of Fano fourfolds.The birational geometry of a quiver flag variety is encoded in its Cox ring. This ring is known to be finitely generated,but an explicit set of generators is not known. The idea for the project is to use the fact that the Cox ring of a quiverflag variety can be interpreted as the semi-invariant ring of the corresponding quiver and dimension vector. As such,it is known that the set of Schofield semi-invariant functions provides a spanning set for the ring. It is therefore naturalto ask for an efficient collection of Scofield semi-invariants that provide a (minimal) set of algebra generators. Thespecial case where the quiver flag variety is the Grassmannian is well known, and indeed, the description of thegenerators is known as the `First Fundamental theorem of invariant theory'.Going deeper, if generators can be understood, then there are two natural questions: first, how to compute relations,thereby generalising the `Second Fundamental Theorem of Invariant Theory'; and second, how to use thesegenerators to compute (toric) degenerations of the quiver flag variety. The programme of Kalashnikov then allowsone to compute explicit mirror partners to her four-dimensional Fano varieties obtained as zero-loci in quiver flagvarieties.
该研究项目旨在计算箭旗品种的考克斯环的生成元,以期了解箭旗品种的退化及其在镜像对称中的应用。箭旗品种提供了一类特殊的品种,它概括了A型旗品种。给定一个具有唯一源和维向量的非循环向量的选择,自然的GIT构造产生一个非循环向量簇,每个这样的簇都是一个光滑的Mori Dream Space,可以作为一个点上的格拉斯曼向量的迭代塔来获得。它们在代数几何中提供了自然的环境空间,最近被卡拉什尼科夫用来产生许多新的Fano四重的例子。已知这个环是双生成的,但不知道一组明确的生成元。这个项目的想法是利用这样一个事实,即一个quiverflag簇的考克斯环可以被解释为相应的维数和维数向量的半不变环。因此,已知斯科菲尔德半不变函数的集合提供了环的生成集。因此,很自然地要求一个有效的集合斯科菲尔德半不变量,提供了一个(最小)集的代数生成器。我们已经知道了Grassmannian是一个特殊的情形,而且对生成元的描述也被称为“不变论第一基本定理”。更深入地说,如果生成元可以被理解,那么就有两个自然的问题:第一,如何计算关系,从而推广了“不变论第二基本定理”;第二,如何使用这些生成器来计算(复曲面)退化的国旗品种。卡拉什尼科夫的程序,然后allowsone计算明确的镜像合作伙伴,她的四维法诺品种获得零位点的flagvarieties。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
- 批准号:
ST/X003426/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Highly Acidifying Intravaginal Rings with Lactobacillus Probiotics to Treat Bacterial Vaginosis
含乳酸菌益生菌的高度酸化阴道环可治疗细菌性阴道病
- 批准号:
10699458 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of Chemical Transformations of Benzen Rings Using Monocyclic Borepins as Key Intermediates
以单环 Borepins 作为关键中间体的苯环化学转化研究进展
- 批准号:
23K13738 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Synthetic Method for Medium-Sized Rings with Heterobimetallic Complexes bearing Catalytic Pocket
带催化袋的异双金属配合物中型环的合成方法开发
- 批准号:
23K13735 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Preparation of Axially Chiral Molecules with Circularly Polarized Luminescence: Derived from pai-pai Interaction of Heteroaromatic Rings
具有圆偏振发光的轴向手性分子的制备:源自杂芳环的排排相互作用
- 批准号:
23K17922 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rings and Clamps around DNA in Asgard Archaeal cells: Insights into DNA replication and repair from our closest prokaryotic ancestors
阿斯加德古菌细胞中 DNA 周围的环和夹:从我们最接近的原核祖先那里深入了解 DNA 复制和修复
- 批准号:
2883516 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
LEAPS-MPS: Functional Identities, Nilpotent Rings, and Garside Shadows
LEAPS-MPS:功能恒等式、幂零环和 Garside Shadows
- 批准号:
2316995 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Coffee rings and ridges: predicting late-time deposit profiles in evaporating droplets
咖啡环和咖啡脊:预测蒸发液滴中的后期沉积剖面
- 批准号:
EP/X035646/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Towards the theory of Arf rings of higher dimension
迈向高维Arf环理论
- 批准号:
23K03058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)