Early Thermal Runaway Detection & Condition Monitoring in Traction Battery Packs through Gas Detection

早期热失控检测

基本信息

  • 批准号:
    2440377
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The proposed project presents a novel way of monitoring lithium-ion cells inside traction battery packs by using a single gas sensor. Each battery cell in the battery pack will be coated in an agent material which will have a slightly different decomposition signature for each cell. These materials will be designed to "activate" and release gasses at very specific temperatures. By detecting the composition of the released gasses, a single sensor can detect and locate a thermal event occurring at any cell inside the battery pack. Furthermore, the extremely dangerous thermal runaway mechanism that can occur in lithium-ion batteries can be directly characterised by the cell temperature. This new method will allow for early detection of thermal runaway for all cells in a pack, a very difficult task using current monitoring techniques. The data from the gas sensor can be fed directly back into the battery management system (BMS) to shut down the system or activate a prevention system. If there is enough resolution in the 'signature' of each material decomposition, the method could potentially be used to infer the degradation of the cells due to thermal cycling. Existing BMS's fall short when attempting to detect thermal events in a battery pack as they typically rely on discrete temperature sensors such as thermocouples. In large scale battery packs, it is not feasible to monitor each cell with a discrete sensor for various reasons including cost, manufacturing difficulties, computing time etc. Instead, a single sensor is used to monitor groups of cells. This solution is flawed however as any thermal runaway event can go undetected until it is too late if it occurs in a cell which is not directly monitored. Other methods of thermal runaway detection at pack level include gas detection of HF and other gases which are vented from a cell at high temperatures and pressures. The venting event however occurs well into the thermal runaway process and is typically too late to deploy prevention strategies. The proposed method is anticipated to be able to detect thermal runaway at pack level much quicker and more accurately than existing methods.Year 1: The first year will contain mostly research split up into sections which address the distinctive issues of the project. The research will cover battery technology, agent materials, application techniques and gas detection methods. Years 2-3: Years 2-3 will mostly contain experimental work. Depending on the research and available resources in year 1, experiments will need to be carried out to determine the surface temperature characteristics of various lithium-ion batteries under different ageing states. The agent materials researched in year 1 will be manufactured and tested with a gas chromatograph to determine if they function as required in terms of gas decomposition and activation temperature. Once the agent materials are determined, experiments will be carried out to find the best method for applying them to the battery cells. The agent materials will then be applied to dummy batteries which will be heated by a heating element to see if they behave as expected. The gas detection in this stage will be done by both a gas chromatograph and various sensors identified in the research. This will determine which sensors are suitable for the final application. The agent materials will then be applied to real cells which will be purposely put into thermal runaway to assess how effective they are in detecting thermal events. The 'signature' of the gas emitted from the coatings will be investigated through several different cyclic tests on various cells to assess the feasibility of determining the cell degradation. Once optimised, the method will be tested on a commercial EV battery pack to assess the functionality of the method at pack level. Year 4: Year 4 will mostly contain writing up, evaluating, and presenting the results and findings from the experiments in years 2-3.
该项目提出了一种通过使用单个气体传感器来监测牵引电池组内部锂离子电池的新方法。电池组中的每个电池单元将被涂覆在代理材料中,该代理材料对于每个单元具有略微不同的分解特征。这些材料将被设计成在非常特定的温度下“激活”和释放气体。通过检测释放气体的成分,单个传感器可以检测和定位在电池组内的任何电池处发生的热事件。此外,锂离子电池中可能发生的极其危险的热失控机制可以直接通过电池温度来表征。这种新方法将允许早期检测的热失控的所有细胞在一个包,一个非常困难的任务,使用目前的监测技术。来自气体传感器的数据可以直接反馈到电池管理系统(BMS)中,以关闭系统或激活预防系统。如果在每种材料分解的“特征”中有足够的分辨率,则该方法可能用于推断由于热循环导致的电池退化。现有的BMS在试图检测电池组中的热事件时达不到要求,因为它们通常依赖于诸如热电偶的离散温度传感器。在大规模电池组中,由于各种原因,包括成本、制造困难、计算时间等,用离散传感器监测每个电池是不可行的。相反,使用单个传感器来监测电池组。然而,这种解决方案是有缺陷的,因为任何热失控事件都可能未被检测到,直到如果它发生在未被直接监测的单元中,则为时已晚。在电池组水平上的热失控检测的其它方法包括HF和其它气体的气体检测,这些气体在高温和高压下从电池中排出。然而,排气事件发生在热失控过程中,并且通常为时已晚,无法部署预防策略。所提出的方法预计能够检测到热失控在包水平更快,更准确地比现有的方法。第一年:第一年将主要包括研究分为部分,解决该项目的独特问题。研究将涵盖电池技术、试剂材料、应用技术和气体检测方法。第2-3年:第2-3年主要是实验性工作。根据第一年的研究和可用资源,将需要进行实验,以确定各种锂离子电池在不同老化状态下的表面温度特性。第1年研究的试剂材料将进行生产,并使用气相色谱仪进行测试,以确定其在气体分解和活化温度方面是否符合要求。一旦确定代理材料,将进行实验,以找到将其应用于电池单元的最佳方法。然后将试剂材料应用于假电池,假电池将被加热元件加热,以观察它们是否表现出预期的行为。此阶段的气体检测将由气相色谱仪和研究中确定的各种传感器完成。这将决定哪些传感器适合最终应用。然后将试剂材料应用于真实的细胞,这些细胞将被故意置于热失控中,以评估它们在检测热事件方面的有效性。将通过对各种电池进行几种不同的循环测试来研究涂层排放的气体的“特征”,以评估确定电池降解的可行性。一旦优化,该方法将在商用电动汽车电池组上进行测试,以评估该方法在电池组水平上的功能。第四年:第四年主要包括撰写,评估和展示2-3年实验的结果和发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
  • 批准号:
    51806227
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Spontaneous Internal Short Circuit Caused Thermal Runaway of Lithium-ion Batteries through In Situ Diagnosis
职业:通过原位诊断了解自发内部短路引起的锂离子电池热失控
  • 批准号:
    2240029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: Thermal Runaway Protection and Suppression for Lithium-Ion Batteries
SBIR 第二阶段:锂离子电池的热失控保护和抑制
  • 批准号:
    2126940
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Project DETAIN: Designing an intelligent EV battery storage facility capable of the DETection and contiAINment of thermal runaway
DETAIN 项目:设计能够检测和遏制热失控的智能电动汽车电池存储设施
  • 批准号:
    133861
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
STTR Phase I: Thermal Runaway and Pressure Suppression (TRAPS) for Lithium-Ion Batteries
STTR 第一阶段:锂离子电池的热失控和压力抑制 (TRAPS)
  • 批准号:
    1913998
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
In-situ analysis of thermal decomposition of electrode materials during thermal runaway of lithium-ion batteries
锂离子电池热失控过程中电极材料热分解的原位分析
  • 批准号:
    19K04941
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Modelling and Robust Parametric Estimation for Thermal Runaway in Li-ion Batteries
锂离子电池热失控的数学建模和鲁棒参数估计
  • 批准号:
    2122926
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mechanistic Elucidation of Thermal Runaway in Potassium-Ion Batteries
钾离子电池热失控的机理阐明
  • 批准号:
    1804300
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Self-protection of semi-insulated HTS coil for thermal runaway
半绝缘高温超导线圈热失控的自我保护
  • 批准号:
    16K20898
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Thermal runaway-free operation technology for next-generation superconducting coil systems operated at high current density
高电流密度下运行的下一代超导线圈系统的无热失控运行技术
  • 批准号:
    26820107
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Thermal Runaway Breakdown of Air: A Possible Origin of Energetic Radiation Generated in the Earth's Atmosphere
空气的热失控分解:地球大气中产生的高能辐射的可能来源
  • 批准号:
    0741589
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了