Harnessing Computational and Structural Biology Platforms for Drug Discovery

利用计算和结构生物学平台进行药物发现

基本信息

  • 批准号:
    2440409
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Drug discovery is expensive and laborious, and although computational tools are cheaper relative to their experimental counterparts, they represent a significant time cost in what is still an iterative and subjective process. Computational aspects of drug discovery are particularly relevant during the COVID-19 pandemic, exemplified by the recent Moonshot effort. This began as a particularly large fragment screening against SARS-CoV-2's main protease and now involves crowdsourcing a set of easily synthesised and diverse fragments in order to create an anti-viral drug compound that will be vital for long term management of the pandemic. The Moonshot effort is composed of scientists from all over the world who have submitted a combined total of over 15,000 fragments. Pooled computer resources are then used to generate lead compounds, which can then be synthesised and tested for efficacy. This process of fragment-based drug discovery (FBDD), in general, involves using small molecule hits from a screening process (e.g. X-ray crystolographic screening) and optimising them to produce leads. These optimised fragments can show an increased affinity for their targets by multiple orders of magnitude. FBDD allows rational and target-driven lead generation, and the field is still growing with dozens of drugs currently in clinical trials. However as of yet only 4 drugs that FBDD has contributed to, have been brought to market. The question this project sets out to answer is:Can this sort of workflow be automated by using individual structural biology/drug discovery platforms in an integrated way for particular bacterial targets? Can the automated pipeline be used by a non-specialist? Individual tools will be assessed for reliability, accuracy and extensibility and a method of integrating them will be developed, using python. An example of a promising (Python-based) tool that can be incorporated into an automated workflow in the Computer-Aided Drug Design (CADD) pipeline is DeLinker. DeLinker is a machine learning approach for fragment linking and scaffold hopping, which addresses the lack of 3D generative fragment-linking software. It can produce linkers using spatial information of two initial fragments, utilising the distance between them and their relative orientations to produce novel linkers not in the initial training database.The automated Python workflow will be validated by optimising leads for two bacterial targets, the transcriptional regulator PrfA in Listeria monocytogenes and the toxin-antitoxin system of Mycobacterium tuberculosis. L. monocytogenes is a food-borne pathogen that causes listerosis, with major outbreaks occuring on an annual basis. A potential target is the virulence machinery in L. monocytogenes and is non-bactericidal, so has less chance of resistance relative to traditional antibacterial approaches. There are known inhibitors for an intraprotein 'tunnel' previously identified in L. monocytogenes using ring-fused 2-pyridone hetero-cycles that reduced virulence by binding and attenuating PrfA, so this particular target is ripe for a fragment-linking approach to develop inhibitors with antivirulence properties, containing that moiety. M. tuberculosis (TB) is the number one cause of death from infectious disease. Toxin-antitoxin systems regulate cellular processes and are therapeutic targets, and the toxin in TB, MbcT, is bactericidal unless neutralized by its antitoxin MbcA, and causes rapid cell death. The search for a small molecule inhibitor for the MbcTA (toxin-antitoxin) complex or the inactivate MbcA antitoxin could be an avenue to combat TB.
药物发现既昂贵又费力,尽管计算工具比实验工具便宜,但在仍然是一个反复和主观的过程中,它们代表着相当大的时间成本。在新冠肺炎大流行期间,药物发现的计算方面尤其相关,最近的登月努力就是一个例证。这项工作最初是针对SARS-CoV-2 S主蛋白酶的一个特别大的片段筛选,现在涉及到众包一套易于合成和多样化的片段,以创造一种对长期控制疫情至关重要的抗病毒药物化合物。登月计划由来自世界各地的科学家组成,他们总共提交了超过15,000个碎片。然后使用汇集的计算机资源来生成先导化合物,然后可以合成这些化合物并测试其有效性。这一基于片段的药物发现(FBDD)过程通常涉及使用筛选过程(例如X射线晶体筛选)中的小分子命中,并对其进行优化以产生铅。这些优化的片段可以显示出对其目标的亲和力增加了好几个数量级。FBDD允许理性和目标驱动的铅产生,而且该领域仍在增长,目前有数十种药物处于临床试验中。然而,到目前为止,FBDD贡献的只有4种药物已经上市。这个项目要回答的问题是:这种工作流程是否可以通过使用针对特定细菌目标的单独结构生物学/药物发现平台的集成方式来实现自动化?自动化管道可以由非专业人员使用吗?将对各个工具的可靠性、准确性和可扩展性进行评估,并将使用Python开发一种整合这些工具的方法。DeLinker就是一个很有前途的(基于Python的)工具,它可以整合到计算机辅助药物设计(CADD)流水线中的自动化工作流程中。DeLinker是一种用于片段链接和脚手架跳跃的机器学习方法,它解决了缺乏3D生成性片段链接软件的问题。它可以利用两个初始片段的空间信息来产生连接子,利用它们之间的距离和它们的相对方向来产生初始训练数据库中没有的新连接子。自动化的巨蟒工作流将通过优化两个细菌靶标-单核细胞增生性李斯特菌中的转录调控因子PrFA和结核分枝杆菌的毒素-抗毒素系统的引线来验证。单核细胞增多性李斯特菌是一种可引起李斯特菌病的食源性病原体,每年都会发生重大疫情。一个潜在的靶点是单核细胞增多性李斯特氏菌的毒力机制,而且是非杀菌的,因此与传统的抗菌方法相比,耐药的可能性较小。已知的是先前在单核细胞增多性李斯特氏菌中发现的蛋白内“隧道”的抑制剂,该抑制剂使用环融合的2-吡啶酮异环,通过结合和减弱PRFA来降低毒力,所以这个特定的靶点已经成熟,可以用片段连接的方法来开发具有抗毒力特性的抑制剂,其中包含该部分。结核分枝杆菌(TB)是传染病的头号死因。毒素-抗毒素系统调节细胞过程,是治疗的靶点,而结核中的毒素MBCT,除非被其抗毒素MBCA中和,否则是杀菌的,并导致细胞迅速死亡。寻找MbcTA(毒素-抗毒素)复合体或灭活的MBCA抗毒素的小分子抑制剂可能是对抗结核病的一种途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational MultiPhysics Analysis of 3D Structural Damage and Failure
3D 结构损伤和失效的计算多物理场分析
  • 批准号:
    DP240101471
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
NSF-BSF: Computational Methods for Shape Space Analysis in Structural Biology
NSF-BSF:结构生物学中形状空间分析的计算方法
  • 批准号:
    2309782
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
  • 批准号:
    23K06597
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
  • 批准号:
    10839199
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
  • 批准号:
    2150396
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computational modeling to evaluate socio-structural interventions for HIV and substance use
用于评估艾滋病毒和药物滥用的社会结构干预措施的计算模型
  • 批准号:
    10789121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Core D: Structural and Computational Virology
核心 D:结构和计算病毒学
  • 批准号:
    10522808
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structural Biology and Computational Modeling Core
结构生物学和计算建模核心
  • 批准号:
    10513917
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了