Unsteady Fluid Dynamics of Tidal Stream Turbines

潮汐流涡轮机的非定常流体动力学

基本信息

  • 批准号:
    2440746
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Tidal stream energy offers a largely unexploited renewable energy source with the benefit of predictability of energy supply 24 hours a day. If the UK's vast tidal range resources can be harnessed, tidal power has the potential to play a significant role in the decarbonisation of the country's energy mix and help it meet ambitious 2050 greenhouse gas emission reduction targets. As a world leader in tidal technology, there are significant economic opportunities for the UK from investment in domestic tidal infrastructure and the potential to export the technology and expertise to other nations.Yet despite its predictability, tidal stream energy bears a higher economic and environmental cost relative to some of its renewable counterparts as the technology must operate in very harsh environments with waves and turbulence producing large unsteady loads on the turbines, resulting in premature device failure and over-conservatism during the design phase.Working with industrial and academic partners alike, the project will centre on Computational Fluid Dynamics (CFD) modelling as well as laboratory scale turbine experiments to understand how unsteady flows, waves and turbulence develop unsteady rotor loading, and how this loading can be incorporated in engineering design tools. In developing a more accurate computational model of rotor dynamics, turbine designs can be optimised, yielding a lower incidence of in-field failures and a potential reduction in the levelised cost of electricity (LCOE) for consumers.The project falls primarily within the EPSRC Energy research area, however, owing to its multi-disciplinary nature involving fluid mechanics and renewable energy, there is also significant overlap with the Engineering theme. At its heart, the aims of the project are aligned with several key EPSRC strategic objectives, namely, achieving UK energy security and efficiency whilst reducing reliance on imported fossil fuels; ensuring a reliable energy infrastructure which underpins the UK economy; and introducing the next generation of innovative and disruptive technologies, which provide affordable energy and limit the impact on scarce natural resources and the environment.The project takes place in the context of the EPSRC-funded Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (WAMESS CDT), which is a collaboration between the Universities of Strathclyde, Oxford and Edinburgh.
潮流能源提供了一种基本上未被开发的可再生能源,其好处是能源供应一天24小时可预测。如果英国广阔的潮汐范围资源能够被利用,潮汐能有可能在该国能源结构的脱碳方面发挥重要作用,并帮助该国实现雄心勃勃的2050年温室气体减排目标。作为潮汐技术的世界领先者,对国内潮汐基础设施的投资以及向其他国家输出技术和专业知识的潜力为英国带来了巨大的经济机会。然而,尽管潮汐能具有可预测性,但与一些可再生能源相比,潮汐能承担着更高的经济和环境成本,因为该技术必须在非常恶劣的环境中运行,波浪和湍流在涡轮机上产生大量非恒定负荷,导致装置过早故障,并在设计阶段过于保守。该项目将与工业界和学术界合作,重点研究计算流体动力学(CFD)建模以及实验室规模的涡轮机实验,以了解非恒定流如何波浪和湍流发展了非稳定的转子载荷,以及如何将这种载荷结合到工程设计工具中。在开发更准确的转子动力学计算模型时,可以优化涡轮机设计,从而降低现场故障发生率,并潜在地降低用户的统一电力成本(LCOE)。该项目主要属于EPSRC能源研究领域,然而,由于其涉及流体力学和可再生能源的多学科性质,也与工程主题有显著重叠。就其核心而言,该项目的目标与EPSRC的几个关键战略目标保持一致,即在减少对进口化石燃料的依赖的同时实现英国的能源安全和效率;确保支撑英国经济的可靠能源基础设施;以及引入下一代创新和颠覆性技术,这些技术提供负担得起的能源,并限制对稀缺的自然资源和环境的影响。该项目是在EPSRC资助的风能和海洋能源系统与结构博士培训中心(WAMESS CDT)的背景下进行的,该中心是斯特拉斯克莱德大学、牛津大学和爱丁堡大学的合作伙伴。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

随机进程代数模型的Fluid逼近问题研究
  • 批准号:
    61472343
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
  • 批准号:
    11275269
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
  • 批准号:
    2903462
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
  • 批准号:
    2340259
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Numerical study on quantum fluid dynamics in micro space
微空间量子流体动力学数值研究
  • 批准号:
    23KJ1832
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
  • 批准号:
    EP/X028771/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Fluid Dynamics - understanding fluid dynamics to improve our lives
流体动力学 - 了解流体动力学以改善我们的生活
  • 批准号:
    2882596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了