The Structure of C*-Algebras of Product Systems

乘积系统的 C* 代数的结构

基本信息

  • 批准号:
    2441268
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

A major trend in the area of operator theory is the use of operator algebras for quantizing geometrical structures and translating discrete properties of the structures into analytic properties of the related operator algebras. The motivation is two-fold. On the one hand, it can be used to test conjectures within the field: finding operator algebras with certain properties reduces to producing simpler dynamical systems. On the other hand, interdisciplinary links can emerge. For example, classification problems can be tested through isomorphisms of algebras. To this end, the quantizations must reflect rigidly the geometrical behaviour of the structure.In our study we consider a quantization via a Fock space construction, similar to what is done in quantum mechanics. In the past 20 years, the community has extensively studied C*-algebras that relate to dynamics evolving in one discrete direction. The obtained class contains previously known constructions arising from graphs and dynamical systems that play a prominent role in the theory of C*-algebras. Katsura's work has been very influential, allowing for further developments. Let us give a short description of several results to emphasize on the impact of the one-variable Gauge Invariant Uniqueness Theorem (GIUT).i. Katsura achieved necessary and sufficient conditions for nuclearity of Cuntz-Pimsner algebras. Through a careful analysis, he also produced a 6-term exact sequence for computing its K-theory. The link is provided exactly through the solutions of ideals that define the covariant representations.ii. The purpose of the tail-adding technique is to dilate a non-injective C*-correspondence to an injective one so that their Cuntz-Pimsner algebras are Morita equivalent. This is in analogy to removing sinks of graphs by adding infinite tails. For C*-correspondences, it was first established by Muhly-Tomforde and later extended by Kakariadis-Katsoulis. With some care, the tail can be chosen to preserve sub-classes. iii. Morita theory effectively matches representations, and a C*-alternative has been introduced by Rieffel. A similar theory has been developed for non-selfadjoint algebras by Blecher-Muhly-Paulsen and Eleftherakis. Muhly-Solel imported it to the context of C*-correspondences. By using the GIUT it was shown by Muhly-Solel and Eleftherakis-Kakariadis-Katsoulis that Morita equivalence is inherited by the related algebras. iv. Taking motivation from symbolic dynamics, Muhly-Pask-Tomforde lift the strong shift equivalence to regular C*-correspondences. By using the GIUT on the bipartite inflation, they showed that strong shift equivalence implies Morita equivalence for the Cuntz-Pimsner algebras, but not for the Toeplitz-Pimsner algebras and tensor algebras. This theory has been extended to shift equivalence by Kakariadis-Katsoulis. A key point is the minimal extension of an injective C*-correspondence to an essential bimodule. This was established through a direct limit process similar to injective C*-dynamics.v. Being a co-universal object, the C*-envelope often coincides with a Cuntz-type algebra. This is the case for the tensor algebras, as shown by Katsoulis-Kribs, but this is not exclusive. As shown by Kakariadis-Shalit, the C*-envelope of the tensor algebra of a factorial language is the quotient by generalized compacts. The use of the GIUT is crucial to achieve these results.The understanding of the covariant relations for more exotic dynamics had remained a mystery for several years. However, recent developments have allowed us to unlock the correct covariant relations that produce rigid boundary quotients. Our motivation in this project is to explore the multi-variable analogues of the Gauge Invariant Uniqueness Theorem and its vast applications. Our research will be carried at the general level but also at the level of product systems of finite rank.
算子理论领域的一个主要趋势是使用算子代数来量化几何结构,并将结构的离散性质转化为相关算子代数的分析性质。动机是双重的。一方面,它可以用来测试领域内的代数:寻找具有某些性质的算子代数可以简化为产生更简单的动力系统。另一方面,跨学科的联系可以出现。例如,分类问题可以通过代数的同构来测试。为此,量子化必须严格反映结构的几何行为。在我们的研究中,我们考虑通过Fock空间结构的量子化,类似于量子力学中所做的。在过去的20年里,社区已经广泛研究了C*-代数,涉及到一个离散方向上的动态演化。所获得的类包含以前已知的结构所产生的图形和动力系统,在C*-代数理论中发挥了突出的作用。卡茨的工作一直非常有影响力,允许进一步的发展。让我们给出几个结果的简短描述,以强调单变量规范不变唯一性定理(GIUT)的影响。Katerina得到了Cuntz-Pimsner代数有核的充分必要条件。通过仔细的分析,他还产生了一个6项精确序列来计算其K理论。该链接是通过定义协变表示的理想的解决方案。加尾技术的目的是将非内射C*-对应扩张为内射C*-对应,使得它们的Cuntz-Pimsner代数是Morita等价的.这类似于通过添加无限的尾部来移除图的汇。对于C*-对应,它首先由Muhly-Tomforde建立,后来由Kakariadis-Katsoulis扩展。如果小心的话,可以选择尾部来保存子类。三.森田理论有效地匹配表示,和C*-替代已介绍了里费尔。Blecher-Muhly-Paulsen和Eleftherakis也为非自伴代数发展了类似的理论。Muhly-Solel将其导入到C*-对应的上下文中。Muhly-Solel和Eleftherakis-Kakariadis-Katsoulis利用GIUT证明了Morita等价可由相关代数继承。四. Muhly-Pask-Tomforde从符号动力学出发,将强移位等价提升到正则C*-对应。通过在二部膨胀上使用GIUT,他们证明了强移位等价对于Cuntz-Pimsner代数意味着Morita等价,但对于Toeplitz-Pimsner代数和张量代数不意味着Morita等价。Kakariadis-Katsoulis将这一理论扩展到了移位等价。一个关键点是内射C*-对应到本质双模的最小扩张。这是通过类似于内射C*-动力学的直接极限过程建立的。v.作为一个共泛对象,C*-包络经常与一个Cuntz型代数相吻合。这是张量代数的情况,如Katsoulis-Krribs所示,但这不是唯一的。如Kakariadis-Shalit所示,阶乘语言的张量代数的C*-包络是广义紧的商。GIUT的使用是实现这些结果的关键。对于更奇异动力学的协变关系的理解多年来仍然是一个谜。然而,最近的发展使我们能够解锁正确的协变关系,产生刚性边界约束。我们在这个项目中的动机是探索规范不变唯一性定理的多变量类似物及其广泛的应用。我们的研究将在一般的水平,但也在有限秩的产品系统的水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Regularity Properties and K-Theory of Crossed Product Operator Algebras
叉积算子代数的正则性质与K理论
  • 批准号:
    2055736
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Operator Algebras of Product Systems
产品系统的算子代数
  • 批准号:
    EP/T02576X/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Matrix product multi-variable polynomials from quantum algebras
量子代数的矩阵积多变量多项式
  • 批准号:
    DP190102897
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Structure and representations of semisimple Lie algebras and semidirect product Lie algebras
半单李代数和半直积李代数的结构和表示
  • 批准号:
    RGPIN-2015-04770
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras associated to product systems, and higher-rank-graph algebras
与产品系统相关的算子代数和高阶图代数
  • 批准号:
    DP0557243
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
The Structure of Crossed Product C*-algebras
叉积C*-代数的结构
  • 批准号:
    0070776
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dilation crossed product algebras
膨胀交叉积代数
  • 批准号:
    44853-1990
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dilation crossed product algebras
膨胀交叉积代数
  • 批准号:
    44853-1990
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Crossed Product Algebras and Non-Commutative Duality
数学科学:叉积代数和非交换对偶性
  • 批准号:
    9003075
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Twisted Crossed Product C*-Algebras and C*Bundles
数学科学:扭曲交叉积 C* 代数和 C* 丛
  • 批准号:
    9003343
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了