A Model for Determining Consonantal Features in Speech
确定语音辅音特征的模型
基本信息
- 批准号:6894722
- 负责人:
- 金额:$ 50.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-05-01 至 2007-01-15
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-range goal of this project is to develop a model that simulates the human perception of the words in spoken language. The immediate goal in the present project is to achieve one part of this task: the identification of the distinctive features of consonants in spoken syllables, words and sentences. Key ideas in our approach are that the speech signal contains reliable acoustic cues to the articulation implemented by the speaker even when surface phonetics are variable, and that the articulation is governed by abstract contrastive phonological representations. Identification of the consonant features proceeds by first performing an acoustic analysis of the speech to establish the locations of landmarks or discontinuities in the sound where consonant closures and releases are formed. The sound in the vicinity of those landmarks is then subjected to further detailed analysis to establish the underlying features of the consonant that generates each landmark, including the place of articulation, the voicing feature, the nasal feature etc. This further analysis involves extracting from the sound a number of attributes that provide cues for each of the underlying consonant features. The selection of these attributes is guided by the requirement that they be closely related to the articulatory shapes and movements that produced the speech. In the proposed work, our current understanding of the combination of attributes that most effectively reveal the articulation and its governing features and segments will be expanded and refined, through detailed theory-driven acoustic measures, perceptual experimentation and appropriate statistical analysis. The robustness of the model will be evaluated using various kinds of utterances, from citation forms to running speech. The performance of the model will also be tested in speech that has been contaminated with noise, and the errors made by the model will be compared with those made by human listeners. The model has application in the study of speech perception by listeners with impaired hearing or by listeners in an environment in which speech is degraded. Understanding of these processes of speech perception can lead to improved approaches to the remediation of disorders of speech perception and production.
这个项目的长期目标是开发一个模型来模拟人类对口语单词的感知。当前项目的直接目标是完成这项任务的一部分:识别口语音节、单词和句子中辅音的独特特征。我们的方法的关键思想是,即使表面语音是可变的,语音信号也包含可靠的声音线索,以表明说话者所实现的发音,并且发音是由抽象的对比语音表征控制的。辅音特征的识别首先要对语音进行声学分析,以确定辅音中形成闭合和释放的标志或不连续性的位置。然后对这些标志附近的声音进行进一步的详细分析,以确定产生每个标志的辅音的潜在特征,包括发音位置、发声特征、鼻音特征等。这种进一步的分析包括从声音中提取一些属性,这些属性为每个潜在的辅音特征提供线索。这些属性的选择是根据它们与产生语音的发音形状和动作密切相关的要求来指导的。在提出的工作中,我们目前对最有效地揭示发音及其控制特征和片段的属性组合的理解将通过详细的理论驱动的声学测量,感知实验和适当的统计分析来扩展和完善。模型的鲁棒性将使用各种话语来评估,从引用形式到运行语音。在被噪声污染的语音中测试模型的性能,并将模型的错误与人类听众的错误进行比较。该模型可应用于听力受损的听者或处于言语退化环境中的听者的言语感知研究。理解这些言语感知的过程可以导致改进的方法来补救言语感知和生产障碍。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do listeners store in memory a speaker's habitual utterance--final phonation type?
听众是否会在记忆中存储说话者的习惯性话语——最终的发声类型?
- DOI:10.1159/000235658
- 发表时间:2009
- 期刊:
- 影响因子:0.9
- 作者:Bohm,Tamás;Shattuck-Hufnagel,Stefanie
- 通讯作者:Shattuck-Hufnagel,Stefanie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH N STEVENS其他文献
KENNETH N STEVENS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH N STEVENS', 18)}}的其他基金
A Model for Determining Consonantal Features in Speech
确定语音辅音特征的模型
- 批准号:
6399547 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
MODEL FOR DETERMINING CONSONANTAL FEATURES IN SPEECH
确定语音中辅音特征的模型
- 批准号:
6175384 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
A Model for Determining Consonantal Features in Speech
确定语音辅音特征的模型
- 批准号:
6767841 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
A Model for Determining Consonantal Features in Speech
确定语音辅音特征的模型
- 批准号:
6634474 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
MODEL FOR DETERMINING CONSONANTAL FEATURES IN SPEECH
确定语音中辅音特征的模型
- 批准号:
2909901 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
MODEL FOR DETERMINING CONSONANTAL FEATURES IN SPEECH
确定语音中辅音特征的模型
- 批准号:
2700967 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
MODEL FOR DETERMINING CONSONANTAL FEATURES IN SPEECH
确定语音中辅音特征的模型
- 批准号:
2414673 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
MODEL FOR DETERMINING CONSONANTAL FEATURES IN SPEECH
确定语音中辅音特征的模型
- 批准号:
2128482 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
A Model for Determining Consonantal Features in Speech
确定语音辅音特征的模型
- 批准号:
6516152 - 财政年份:1996
- 资助金额:
$ 50.32万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 50.32万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 50.32万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 50.32万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 50.32万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 50.32万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 50.32万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 50.32万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 50.32万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 50.32万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 50.32万 - 项目类别:














{{item.name}}会员




