Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
基本信息
- 批准号:2305038
- 负责人:
- 金额:$ 38.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project involves nonlinear elliptic partial differential equations that arise in geometry, physics, and engineering. The equations studied in this project exhibit a certain degree of degeneracy or singularity. Degenerate elliptic equations demonstrate significant differences from uniformly elliptic equations, an important class of nondegenerate counterparts. Solutions of degenerate elliptic equations have much worse properties than those of uniformly elliptic equations (typically, a loss of smoothness of derivatives at some level). The classical analysis of uniformly elliptic equations, emphasizing the regularity of solutions (i.e., smoothness of their derivatives), is inadequate for studying degenerate elliptic equations. The theme of the project is the analysis of solutions to these equations near sets where degeneracy or singularity occurs. One of the main tasks is to study the properties of solutions in new formats and to identify optimal conditions for the existence and regularity of solutions. Such a task is reflected in all problems in this project. The central part of this project is dedicated to the development of new methods and techniques in studying the properties of solutions of degenerate and singular elliptic differential equations. In addition to pursuing fundamental problems in geometry and physics, this project also contributes to establishing a general framework to study several important classes of degenerate elliptic differential equations and advancing our knowledge of these equations. Student training and interdisciplinary collaborations are important aspects of this project. Three graduate students in mathematics and one graduate student in electrical engineering participate in this project. The project will study degenerate or singular elliptic partial differential equations. Due to the complexity and diversity of the types of degeneracy, it is impossible to develop a general theory for degenerate elliptic equations. The project focuses on three classes of degenerate elliptic equations that appear frequently in geometry and physics. The first class is the uniformly degenerate elliptic equations. Many important geometric problems are reduced to this class of equations. These equations are defined on compact manifolds with boundaries and degenerate only on boundaries, with a uniform rate of degeneracy in terms of the distance to the boundary. The second class of equations consists of elliptic equations that are singular at isolated points, with a uniform rate of singularity in terms of the distance to the singular point. Asymptotic expansions demonstrate that solutions to these two classes of equations are singular with specific singular factors. The primary objective of the research on these equations is to study the impact of these singular factors on the existence and regularity of solutions. The third class of equations consists of elliptic equations and systems of elliptic equations that are singular in a set of codimension 2. This class of equations appears in the study of radially symmetric solutions to the Einstein equation, near the extreme Kerr solution. The research on this class of equations will study the asymptotic behaviors of solutions near punctures and to prove the mass and angular momentum inequality. Completely different methods are required to study these three classes of equations, although they differ only in the dimension of the sets where degeneracy occurs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及几何,物理和工程中出现的非线性椭圆偏微分方程。本项目研究的方程具有一定程度的退化性或奇异性。退化椭圆型方程与一致椭圆型方程是一类重要的非退化椭圆型方程。退化椭圆型方程的解比一致椭圆型方程的解具有更差的性质(通常,在某些水平上失去导数的光滑性)。一致椭圆方程的经典分析,强调解的正则性(即,光滑的导数),是不足以研究退化椭圆型方程。该项目的主题是分析这些方程的解,这些方程靠近发生简并或奇异的集合。主要任务之一是研究新格式的解的性质,并确定解的存在性和正则性的最佳条件。这样的任务体现在这个项目的所有问题上。该项目的中心部分致力于发展新的方法和技术,研究退化和奇异椭圆型微分方程解的性质。除了追求几何和物理中的基本问题外,该项目还有助于建立一个通用框架来研究几类重要的退化椭圆微分方程,并提高我们对这些方程的认识。学生培训和跨学科合作是这个项目的重要方面。三名数学专业的研究生和一名电气工程专业的研究生参加了这个项目。该项目将研究退化或奇异椭圆型偏微分方程。由于退化类型的复杂性和多样性,发展退化椭圆型方程的一般理论是不可能的。该项目的重点是三类退化椭圆方程,经常出现在几何和物理。第一类是一致退化椭圆型方程。许多重要的几何问题都归结为这类方程。这些方程定义在紧流形上的边界和退化只在边界上,与一个统一的退化率的距离边界。第二类方程由在孤立点处奇异的椭圆型方程组成,其奇异性率与到奇点的距离一致。渐近展开证明了这两类方程的解是奇异的,并具有特定的奇异因子。研究这些方程的主要目的是研究这些奇异因子对解的存在性和正则性的影响。第三类方程由椭圆方程和在余维为2的集合中奇异的椭圆方程组组成。这类方程出现在爱因斯坦方程的径向对称解的研究中,在极端克尔解附近。对这类方程的研究将研究其解在穿刺点附近的渐近行为,并证明质量和角动量不等式。研究这三类方程需要完全不同的方法,尽管它们的不同之处仅在于发生简并的集合的维度。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Han其他文献
Understanding the Impact of HIV on MPOX Transmission in an MSM Population: A Mathematical Modeling Study
了解 HIV 对 MSM 人群中 MPOX 传播的影响:数学模型研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew Omame;Qing Han;S. Iyaniwura;Adeniyi Ebenezer;N. Bragazzi;Xiaoying Wang;Jude Dzevela Kong;W. A. Woldegerima - 通讯作者:
W. A. Woldegerima
Optimal regularity of minimal graphs in the hyperbolic space
双曲空间中最小图的最优正则性
- DOI:
10.1007/s00526-015-0939-6 - 发表时间:
2015-11 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Weiming Shen;Yue Wang - 通讯作者:
Yue Wang
Design and Synthesis of 60 degrees Dendritic Donor Ligands and Their Coordination-Driven Self-Assembly into Supramolecular Rhomboidal Metallodendrimers
60度树枝状供体配体的设计与合成及其配位驱动自组装成超分子菱形金属树枝状聚合物
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.6
- 作者:
Qing Han;Quan-Jie Li;Jiuming He;Bingjie Hu;Hongwei Tan;Zeper Abliz;Cui-Hong Wang;Yihua Yu;Hai-Bo Yang - 通讯作者:
Hai-Bo Yang
Interior estimates for the n-dimensional Abreu?s equation
n 维 Abreuï¤s 方程的内部估计
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.7
- 作者:
Bohui Chen;Qing Han;An-Min Li;Li Sheng - 通讯作者:
Li Sheng
Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity
具有有机金 (III) 配合物的金属有机框架可提高光催化胺氧化效率和选择性
- DOI:
10.1002/chem.201803161 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Qing Han;Yue Lin Wang;Min Sun;Chun Yi Sun;Shan Shan Zhu;Xin Long Wang;Zhong Min Su - 通讯作者:
Zhong Min Su
Qing Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Han', 18)}}的其他基金
Degenerate Partial Differential Equations in Geometry
几何中的简并偏微分方程
- 批准号:
1404596 - 财政年份:2014
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Partial Differential Equations in Geometry
几何中的偏微分方程
- 批准号:
1105321 - 财政年份:2011
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0654261 - 财政年份:2007
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
- 批准号:
0354948 - 财政年份:2004
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
- 批准号:
0100260 - 财政年份:2001
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Partial Differential Equations and Variational Problems
偏微分方程和变分问题
- 批准号:
9801250 - 财政年份:1998
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Differential Equations and Variational Problems
数学科学:非线性微分方程和变分问题
- 批准号:
9501122 - 财政年份:1995
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2021
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2020
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
Systematical geometric analysis and asymptotic analysis for evolution equations
演化方程的系统几何分析和渐近分析
- 批准号:
19H05599 - 财政年份:2019
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2019
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2018
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2017
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional Phenomena in Asymptotic Geometric Analysis and Finite-dimensional Random Matrices
渐近几何分析和有限维随机矩阵中的高维现象
- 批准号:
8854-2013 - 财政年份:2017
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual
The Blessing of High Dimension: Asymptotic Geometric Analysis and Its Applications
高维的祝福:渐近几何分析及其应用
- 批准号:
1600124 - 财政年份:2016
- 资助金额:
$ 38.7万 - 项目类别:
Continuing Grant
High-dimensional Phenomena in Asymptotic Geometric Analysis and Finite-dimensional Random Matrices
渐近几何分析和有限维随机矩阵中的高维现象
- 批准号:
8854-2013 - 财政年份:2016
- 资助金额:
$ 38.7万 - 项目类别:
Discovery Grants Program - Individual