Machine Learning and Network Analysis in the Options Market
期权市场中的机器学习和网络分析
基本信息
- 批准号:2444986
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on the statistical analysis of the options market (financial instruments that are derivatives based on the values of underlying securities), by leveraging tools from the literature of machine learning and network analysis.The data set used contains data for options transactions including price and volume information, broken down by market participant. The project fits well into the Information and communication technologies (ICT) research area; such a data set could not only offer itself for a myriad of potential applications but also provides motivation for the development or augmentation of existing techniques for analysis of large time-series data. While financial data are a classic instance of time series, these are widely used across various disciplines to analyse data regarding sensor measurements, personalised medicine, social networks, astronomical observations, or any other data which display an intrinsic temporal structure.A main objective of the project is to perform dimension reduction on the options data with the primary goal of extracting risk factors for the underlying instruments, thus potentially augmenting existing risk models, either statistical or based on fundamentals, of interest to both academics and practitioners. Subsequent downstream tasks could include the detection of anomalies that signal upcoming or undergoing market shifts. Once the relevant time series of low-dimensional structural summaries have been identified, various state-of-the-art techniques for anomaly detection and change-point analysis will be explored. Community detection algorithms designed for time series data will also be performed, providing a clustering of the various instruments, which often differs significantly from the traditional sectorial classifications of the underlying instruments.Linear dimensionality reduction methods, such as Principal Component Analysis (PCA), have been used extensively to study financial markets. In the last decade, nonlinear methods have also been used on data sets of financial indicators to capture low-dimensional representations of time series, for the purpose of prediction or detection of early signs of structural changes in the system. However, to the best of our knowledge, there has not yet been such a study based on the option market data. Robust estimation of the intrinsic dimensionality in the options and equity markets, and identification of shifts in the market regimes, would be of equal interest to both practitioners and regulators. Enhancing risk models, and improving the accuracy of algorithms predicting volume flow, are tasks of major importance for practitioners, especially market makers. On the other hand, policymakers are interested in a better understanding of systemic risk, construed as the risk of breakdown of the entire financial system and cascading behaviour that can have repercussions on the entire economy. A question of relevance for policymakers is whether, by closely tracking the various risk factors that govern the dynamics of the market, one can detect early signals of stress or upcoming crises.The project is aligned with the following topics: (1) Artificial intelligence technologies, (2) statistics and applied probability, (3) non-linear systems, (4) operational research.
本课题利用机器学习和网络分析等文献中的工具,对期权市场(以标的证券价值为基础的衍生金融工具)进行统计分析。所使用的数据集包含按市场参与者划分的价格和交易量信息等期权交易数据。该项目非常适合信息和通信技术(信通技术)研究领域;这样一个数据集不仅可以为无数潜在的应用提供自身,而且还可以为开发或增强现有的大型时间序列数据分析技术提供动力。虽然金融数据是时间序列的经典实例,但这些数据广泛用于各个学科,以分析有关传感器测量、个性化医疗、社交网络、天文观测或显示内在时间结构的任何其他数据的数据。该项目的主要目标是对期权数据进行降维,其主要目标是提取基础工具的风险因素,从而有可能扩充学术界和从业者都感兴趣的现有风险模型,无论是统计模型还是基于基本原理的模型。随后的下游任务可能包括检测异常,这些异常表明市场即将发生或正在发生变化。一旦相关的时间序列的低维结构摘要已被确定,各种国家的最先进的技术异常检测和变点分析将进行探讨。还将执行为时间序列数据设计的社区检测算法,提供各种工具的聚类,这通常与基础工具的传统部门分类有很大不同。线性降维方法,如主成分分析,已广泛用于研究金融市场。在过去的十年中,非线性方法也被用于金融指标的数据集,以捕获时间序列的低维表示,以预测或检测系统中结构变化的早期迹象。然而,据我们所知,还没有这样的研究基于期权市场的数据。对期权和股票市场内在维度的稳健估计,以及对市场机制变化的识别,对从业者和监管者都具有同等的兴趣。加强风险模型,提高预测流量的算法的准确性,是从业者,特别是做市商的重要任务。另一方面,决策者希望更好地了解系统性风险,即整个金融体系崩溃的风险和可能对整个经济产生影响的连锁反应。对于政策制定者来说,密切关注影响市场动态的各种风险因素,是否能够发现压力或即将到来的危机的早期信号,这是一个重要的问题。该项目与以下主题相一致:(1)人工智能技术,(2)统计学和应用概率,(3)非线性系统,(4)运筹学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization
考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用
- 批准号:
2885828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Network Control Systems Science for Graph Machine Learning
合作研究:图机器学习的网络控制系统科学
- 批准号:
2325417 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Network Control Systems Science for Graph Machine Learning
合作研究:图机器学习的网络控制系统科学
- 批准号:
2325416 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Machine Learning for Analyzing State Dependent Neuronal Network Dynamics
用于分析状态相关神经网络动力学的机器学习
- 批准号:
10825302 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10373650 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10551850 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
- 批准号:
RGPAS-2021-00015 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Machine learning approaches for multi-organ neuronal network mapping and modulation
用于多器官神经元网络映射和调制的机器学习方法
- 批准号:
10746766 - 财政年份:2022
- 资助金额:
-- - 项目类别: