Multi-Scale Reaction Modelling: A Route to a Sustainable Future?
多尺度反应建模:通向可持续未来的途径?
基本信息
- 批准号:2445967
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A shift towards greener and more sustainable manufacturing methods by chemical and pharmaceutical industries is leading to increased implementation of flow processes. These flow processes allow for more flexible and continuous production of a more diverse range of chemical targets. The development of new flow reactors has allowed photo- and electrochemistry to be more widely accessible, allowing for more energy and atom efficient routes for complex chemical syntheses. Modular flow systems allow for the safer use of hazardous chemicals and harsher conditions so greatly expand the process window. When combined with PAT for continuous monitoring there is great opportunity for reaction automation and self-optimisation. When combined with computational modelling, this continuous monitoring will allow for more effective use of the acquired data leading to rapid realization of optimal operating conditions. Creating computational models of chemical systems is increasingly being used by manufacturing companies to make predictions on how their process is operating. Previously, modelling has mainly been used on an industrial scale, however, due to the shift towards smaller scale processes it is necessary to understand the characteristics of reactors on the kilo- and lab scales. Modelling programmes such as gPROMS are purpose built to model chemical production processes. Whilst gPROMS gives good predictions on full processes it has limited predictions down to small scale laboratory reactors. Computational Fluid Dynamics (CFD) has widely been used in the aerospace and automotive industries to visualise fluid flow, recently this has also been applied to manufacturing processes visualising flow within reactors. Understanding the fluid flow within reactors, combined with reaction kinetics, is essential for estimating changes required in the scale up of production processes. The prediction of this scale-up and the ability to quickly establish the optimal process parameters will vastly improve the sustainability and efficiency by ensuring minimal waste in both reagents and energy. The goal of this project is to create tailored models to specific chemical products to facilitate the scale-up of flow reaction systems. This will be done using CFD to optimise reactor design and gPROMS to optimise for operating conditions. The combination of these two methods will allow for quick and easy optimisation of multi-step processes from laboratory to industrial scale. The starting point will be the scale-up of the electro-vortex reactor recently developed at Nottingham, which uses a rotating cylinder inside a static outer cylinder to create Taylor-Couette vortices within the gap between the two cylinders. These vortices de-couple the mixing of reactants from residence time and the reactor has been successfully used for multi-mole per day methoxylation of N-formylpyrrolidine. The first step is to scale-up the production of this from 0.5kg/day to around 20kg/day. This will be tackled by CFD modelling to adapt the reactor design for this larger scale production particularly to investigate the effects of the large volumes of H2 that will be generated. After establishing the optimal reactor design, gPROMS will be used to establish optimal operating conditions within telescoped reactor systems involving the electro-vortex. This can then be expanded to optimising other vortex reactor designs for compound specific reactions.
化学工业和制药业向更绿色和更可持续的制造方法的转变正在导致更多地实施流程流程。这些流动工艺允许更灵活和连续地生产更多样化的化学目标。新型流动反应器的发展使光化学和电化学能得到更广泛的应用,为复杂的化学合成提供了更多能源和原子效率更高的途径。模块化流动系统允许更安全地使用危险化学品和更苛刻的条件,因此大大扩大了工艺窗口。当与PAT相结合进行持续监测时,反应自动化和自我优化的机会很大。当与计算模型相结合时,这种持续监测将允许更有效地利用所获得的数据,从而迅速实现最佳运行条件。制造公司越来越多地使用创建化学系统的计算模型来预测他们的过程是如何运行的。以前,建模主要用于工业规模,然而,由于转向较小规模的过程,有必要了解千级和实验室规模的反应堆的特性。GPROMS等建模程序是专门为模拟化学品生产过程而设计的。虽然gPROMS对全过程有很好的预测,但对小规模实验室反应堆的预测有限。计算流体动力学(CFD)在航空航天和汽车工业中被广泛用于可视化流体流动,最近这一技术也被应用于制造过程中可视化反应器内的流动。了解反应器内的流体流动,结合反应动力学,对于估计扩大生产过程所需的变化是至关重要的。这种扩大规模的预测和快速确定最佳工艺参数的能力将通过确保最大限度地减少试剂和能源的浪费来极大地提高可持续性和效率。该项目的目标是为特定的化学产品创建量身定制的模型,以促进流动反应系统的放大。这将使用CFD来优化反应堆设计,并使用gPROMS来优化操作条件。这两种方法的结合将允许快速、轻松地优化从实验室到工业规模的多步骤过程。其起点将是最近在诺丁汉开发的电涡流反应堆的放大,该反应堆使用静态外筒内的旋转圆柱体,在两个圆柱体之间的间隙内产生泰勒-库埃特旋涡。该反应器已成功地用于N-甲酰基吡咯烷的多摩尔/天甲氧基化反应。第一步是将其产量从每天0.5公斤扩大到每天20公斤左右。这将通过CFD建模来解决,以使反应堆设计适应这种更大规模的生产,特别是调查将产生的大量氢气的影响。在确定最优反应堆设计后,将使用gPROMS在涉及电涡流的套管式反应堆系统中建立最佳运行条件。然后,这可以扩展到优化用于复合特定反应的其他涡流反应器设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Electrocatalytic CO2 reduction reaction networks on single metal catalysts from a multi-scale perspective
多尺度视角下单一金属催化剂上的电催化CO2还原反应网络
- 批准号:
23KJ1438 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrated understanding of peritoneal dissemination for drug delivery based on multi-scale reaction-diffusion model
基于多尺度反应扩散模型对药物腹膜传播的综合理解
- 批准号:
20K21101 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative research: RoL: Using reaction norms to link genomic and phenotypic variation with regional-scale population responses to environmental change
合作研究:RoL:利用反应规范将基因组和表型变异与区域规模人口对环境变化的反应联系起来
- 批准号:
1927177 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative research: RoL: Using reaction norms to link genomic and phenotypic variation with regional-scale population responses to environmental change
合作研究:RoL:利用反应规范将基因组和表型变异与区域规模人口对环境变化的反应联系起来
- 批准号:
1927282 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Ambient-Pressure synchrotron X-ray study to reveal atomic-scale mechanism of CO oxidation and three-way catalytic reaction of Ru based solid-solution nanoparticles
常压同步加速器X射线研究揭示CO氧化的原子尺度机制和钌基固溶体纳米粒子的三效催化反应
- 批准号:
20K15083 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design of a novel multi-scale solid phase reaction process by electronic state control
电子状态控制新型多尺度固相反应过程的设计
- 批准号:
20K21129 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Application of Global Reaction Route Mapping Method to Migration-Behavior Analyses of Lattice Defects and Its Deployment to Real Time Scale Simulations
全局反应路径映射方法在晶格缺陷迁移行为分析中的应用及其在实时尺度模拟中的部署
- 批准号:
19K21917 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nano-scale and real-time fluorescence imaging of metal-corrosion reaction dynamics
金属腐蚀反应动力学的纳米级实时荧光成像
- 批准号:
19K22118 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Fast, Atomic-Scale Investigation of Assembly and Reaction at Surfaces
表面组装和反应的快速原子级研究
- 批准号:
RTI-2020-00708 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Tools and Instruments
Development of exergy recuperating type oxygen production device with a micro-scale reaction heat circulation mechanism.
具有微尺度反应热循环机理的火用回热式制氧装置的研制。
- 批准号:
19H02653 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)