Fast Bayesian Inference at Extreme Scale
极大规模的快速贝叶斯推理
基本信息
- 批准号:2448776
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research aims to advance the state-of-the-art in those AI methodologies which furnish both accurate predictions and high-quality uncertainty representations for the predictions made. The statistical family of Bayesian inference algorithms is well placed to deliver both of these requirements, but more needs to be done to extend these algorithms to 'extreme scale' whilst at the same time maintaining high accuracy and well calibrated measures of uncertainty. Two notable Bayesian inference algorithms are Gaussian processes (GPs) and Bayesian Neural Networks (BNNs). GPs provide well-principled uncertainty representations but in their exact form do not scale well - although there has been recent good progress in this direction using novel distributed linear algebra implementations at the million-data-point level. This research will be geared toward applications with the order of a million data-points plus, which is where an exact GP currently struggles. To deal with these scaling difficulties various approximations to GPs have been developed, all involving a trade-off between quality of prediction and speed of implementation. Setting aside scaling difficulties, the effective uncertainty representations provided by GPs are extremely advantageous. But this situation is turned on its head when we look at deep neural networks. If we set aside any requirement for uncertainty measures then deep neural networks scale very well to extreme scale. However, reliable uncertainty representations are much harder to come by with deep learning and Bayesian Neural Networks (BNN). Given this background the research aim is to extend the state-of-the-art in large scale Bayesian inference algorithms, aiming for (1) improvements in speeds on data-sets of size one million plus (and with good scalability characteristics beyond) ; (2) improvements in reliability both in terms of prediction accuracy and provision of well calibrated uncertainty representations (3) user friendly tuning to strike an optimised balance between model performance and training/testing costs as the data-set sizes increases.
本研究旨在推动人工智能方法的发展,为预测提供准确的预测和高质量的不确定性表示。贝叶斯推理算法的统计家族很好地满足了这两个要求,但要将这些算法扩展到“极端规模”,同时保持高精度和校准好的不确定性测量,还需要做更多的工作。两种著名的贝叶斯推理算法是高斯过程(gp)和贝叶斯神经网络(bnn)。GPs提供了原则良好的不确定性表示,但其精确形式不能很好地扩展——尽管最近在这个方向上有了很好的进展,使用了百万数据点级别的新型分布式线性代数实现。这项研究将面向具有100万数据点以上的应用程序,这是精确GP目前所面临的困难。为了处理这些缩放困难,已经开发了各种gp近似,所有这些近似都涉及预测质量和实现速度之间的权衡。撇开缩放困难不谈,gp提供的有效不确定性表示是非常有利的。但当我们研究深度神经网络时,这种情况就完全不同了。如果我们抛开对不确定性测量的任何要求,那么深度神经网络可以很好地扩展到极端规模。然而,可靠的不确定性表示很难通过深度学习和贝叶斯神经网络(BNN)来实现。在此背景下,研究目标是扩展大规模贝叶斯推理算法的最新技术,旨在(1)提高100万以上数据集的速度(并具有良好的可扩展性特征);(2)在预测精度和提供校准良好的不确定性表示方面提高可靠性(3)随着数据集大小的增加,用户友好的调整以在模型性能和训练/测试成本之间取得最佳平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X027872/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach (PINCODE)
池化推理和精确组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028100/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach PINCODE
池化推理和精确组合分布:贝叶斯方法 PINCODE
- 批准号:
EP/X028712/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
- 批准号:
2242568 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Bayesian inference of the mode of speciation and gene flow using genomic data
使用基因组数据对物种形成和基因流模式进行贝叶斯推断
- 批准号:
BB/X007553/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Inform Shared Decision-making with Advanced Bayesian Causal Inference to Improve Quality of Pediatric Rheumatology Care
通过高级贝叶斯因果推理为共享决策提供信息,以提高儿科风湿病护理的质量
- 批准号:
10646649 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
-- - 项目类别: