INTELLIGENT CONTROL OF UPPER EXTREMITY NEURAL PROSTHESES
上肢神经假肢的智能控制
基本信息
- 批准号:6908435
- 负责人:
- 金额:$ 16.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
INTELLIGENT CONTROL OF UPPER EXTREMITY NEURAL PROSTHESES
A common feature of spinal cord injury (SCI) and neurological movement disorders is that the peripheral neuromuscular system remains intact. Functional Electrical Stimulation (FES) offers the potential to restore movement in these individuals. Impressive improvements in electrode and sensor hardware have recently been made, but development of control algorithms for complex dynamic movements remains difficult.
Reinforcement learning (RL) is a technique from artificial intelligence that has the potential to overcome this problem. A RL-based control system learns from experience how to control movement, in very much the same way as an infant. The system receives information from multiple sensors, as well as a reward signal, and generates actions, i.e. muscle stiimulation levels, that are initially random. The system will learn to predict the consequences of its actions and will ultimately converge to a control strategy that maximizes the sum of rewards over time. An essential feature of RL is that the control strategy is not created by the designer, but is learned from experience. This learning process could ultimately result in motor behavior of much higher quality than can be achieved with traditionally designed feedback control systems, which tend to "fight" rather than exploit the natural dynamics of the body such as inertia, pendulum and mass-spring mechanisms. Furthermore, a self learning system has the advantage that it can adapt itself to the user's body mass, muscle strength, as well as variations in electrode location.
The long-term goal is a system that integrates high-level commands from the user with signals from implanted sensors to produce intelligent and adaptive motor function. Feasibility of this concept will be tested here for FES control of six muscles in the upper extremity, to perform the task of reaching in the horizontal plane. The following specific aims are proposed: (1) Implementation of RL control on a virtual arm with computer-generated commands and rewards, (2) RL control on a virtual arm, with commands and rewards given by a human operator, and (3) RL control of muscles in a paralyzed arm in two subjects with high cervical spinal cord injury, with commands and rewards given by the user via a head tracker based input device.
上肢神经假体的智能控制
脊髓损伤(SCI)和神经运动障碍的一个共同特征是外周神经肌肉系统保持完整。功能性电刺激(FES)提供了恢复这些人运动的可能性。最近在电极和传感器硬件方面取得了令人印象深刻的改进,但复杂动态运动的控制算法的开发仍然很困难。
强化学习(RL)是一种来自人工智能的技术,有可能克服这个问题。基于RL的控制系统从经验中学习如何控制运动,就像婴儿一样。该系统接收来自多个传感器的信息以及奖励信号,并生成最初随机的动作,即肌肉刺激水平。系统将学习预测其行为的后果,并最终收敛到一个控制策略,随着时间的推移,最大化奖励的总和。RL的一个基本特征是控制策略不是由设计者创建的,而是从经验中学习的。这种学习过程最终可能导致比传统设计的反馈控制系统更高质量的运动行为,传统设计的反馈控制系统倾向于“对抗”而不是利用身体的自然动力学,如惯性,钟摆和质量弹簧机制。此外,自学习系统的优点在于,它可以使自身适应于用户的体重、肌肉强度以及电极位置的变化。
长期目标是一个系统,它将来自用户的高级命令与来自植入传感器的信号集成在一起,以产生智能和自适应的运动功能。这一概念的可行性将在这里测试的FES控制的六个肌肉在上肢,执行的任务,达到在水平面。提出了以下具体目标:(1)利用计算机生成的命令和奖励在虚拟手臂上实现RL控制,(2)利用人类操作员给出的命令和奖励在虚拟手臂上实现RL控制,以及(3)利用用户经由基于头部跟踪器的输入设备给出的命令和奖励在两个具有高颈脊髓损伤的受试者中瘫痪手臂中的肌肉的RL控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTONIE J. VAN DEN BOGERT其他文献
ANTONIE J. VAN DEN BOGERT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTONIE J. VAN DEN BOGERT', 18)}}的其他基金
Efficient Methods for Multi-Domain Biomechanical Simulations
多域生物力学模拟的有效方法
- 批准号:
7170193 - 财政年份:2006
- 资助金额:
$ 16.42万 - 项目类别:
Efficient Methods for Multi-Domain Biomechanical Simulations
多域生物力学模拟的有效方法
- 批准号:
7482356 - 财政年份:2006
- 资助金额:
$ 16.42万 - 项目类别:
Efficient Methods for Multi-Domain Biomechanical Simulations
多域生物力学模拟的有效方法
- 批准号:
7284849 - 财政年份:2006
- 资助金额:
$ 16.42万 - 项目类别:
INTELLIGENT CONTROL OF UPPER EXTREMITY NEURAL PROSTHESES
上肢神经假肢的智能控制
- 批准号:
7085349 - 财政年份:2005
- 资助金额:
$ 16.42万 - 项目类别:
Non-contact ACL injury in sport--mechanisms & prevention
运动中非接触性ACL损伤--机制
- 批准号:
6327073 - 财政年份:2001
- 资助金额:
$ 16.42万 - 项目类别:
Non-contact ACL injury in sport--mechanisms & prevention
运动中非接触性ACL损伤--机制
- 批准号:
6632790 - 财政年份:2001
- 资助金额:
$ 16.42万 - 项目类别:
Non-contact ACL injury in sport--mechanisms & prevention
运动中非接触性ACL损伤--机制
- 批准号:
6512220 - 财政年份:2001
- 资助金额:
$ 16.42万 - 项目类别:
相似海外基金
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 16.42万 - 项目类别:
Research Grant
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
- 批准号:
10715568 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
- 批准号:
10743328 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
- 批准号:
10638813 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
- 批准号:
10823828 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
- 批准号:
10721095 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
- 批准号:
10795328 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
- 批准号:
10828252 - 财政年份:2023
- 资助金额:
$ 16.42万 - 项目类别: