Machine learning approaches for the analysis of circulating tumour DNA

用于分析循环肿瘤 DNA 的机器学习方法

基本信息

  • 批准号:
    2508988
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Tumour cells arise from genetic variants (usually mutations) in cells, which lead to unrestrained cell division. Identifying these genetic variants, and monitoring them over time and treatment, would allow us to detect cancer at an early stage, tailor treatment to specific tumour type, and determine treatment response or remission. However, it is often difficult to obtain tumour tissue, usually a biopsy is required which may be invasive and involves knowing the exact location of the potential tumour. This can make it impossible to obtain multiple tumour samples over time. All cells release cell free DNA (cfDNA) into the blood stream, however tumour cells often release a much larger amount, known as circulating tumour DNA (ctDNA). This ctDNA contains the same genetic variants as the tumour cells, so will be slightly different from other cfDNA. Identifying ctDNA would provide an easily accessible sample that would allow us to detect tumour presence at any time point and determine the precise genetic composition of the tumour. Next generation sequencing can be used to capture all cfDNA. Determining how much of it (if any) is ctDNA is complex since ctDNA can comprise between around 1% and 90% of all cfDNA, and there may be only a very small number of genetic variants which occur only in ctDNA. Studies of ctDNA across a range of cancer types are increasing in number and size, and the project will use machine learning approaches to improve detection of ctDNA and to determine its clinical utility. Firstly machine learning will be used to learn a set of features which distinguish genetic variants found in ctDNA from those found in all cfDNA. Datasets which have matched tumour and cfDNA data will provide an ideal training set, since the tumour data will contain the set of genetic variants which will be seen only in ctDNA. Secondly, once the genetic variants present in the tumour have been identified, the student will then assess the importance of specific mutations, or of the set of all genetic variants, for example the total number of mutations, type of mutations, or fraction of cfDNA that is ctDNA. To do this, we will test whether any of these features can be used to predict clinical factors such as cancer type, response to treatment, or prognosis. There are an increasing number of studies looking at ctDNA across a range of cancer types, and we will use statistical meta-analysis to combine data from multiple studies. The student will develop machine learning methods and apply them to cutting edge genetic sequencing data. This project has the potential to improve cancer detection and diagnosis, and to provide insights into treatment. The student will benefit from a multidisciplinary team, based in the Statistical Genetics and Pharmacogenetics group within the Institute of Translational Medicine at the University of Liverpool, and also work closely with industrial collaborators who are developing sequencing technology.
肿瘤细胞产生于细胞中的遗传变异(通常是突变),这导致细胞分裂不受限制。识别这些遗传变异,并随着时间和治疗的推移对其进行监测,将使我们能够在早期阶段检测癌症,针对特定肿瘤类型进行治疗,并确定治疗反应或缓解。然而,通常很难获得肿瘤组织,通常需要进行活检,这可能是侵入性的,并涉及了解潜在肿瘤的确切位置。这可能使其不可能随着时间的推移获得多个肿瘤样本。所有细胞都会释放无细胞DNA(cfDNA)到血流中,然而肿瘤细胞通常会释放更大量的DNA,称为循环肿瘤DNA(ctDNA)。这种ctDNA含有与肿瘤细胞相同的遗传变异,因此与其他cfDNA略有不同。鉴定ctDNA将提供一个容易获得的样本,使我们能够在任何时间点检测肿瘤的存在,并确定肿瘤的精确遗传组成。下一代测序可用于捕获所有cfDNA。确定其中有多少(如果有的话)是ctDNA是复杂的,因为ctDNA可以占所有cfDNA的约1%至90%,并且可能只有极少数仅出现在ctDNA中的遗传变异。对一系列癌症类型的ctDNA研究的数量和规模都在增加,该项目将使用机器学习方法来改善ctDNA的检测并确定其临床实用性。首先,机器学习将用于学习一组特征,这些特征将ctDNA中发现的遗传变异与所有cfDNA中发现的遗传变异区分开来。具有匹配的肿瘤和cfDNA数据的数据集将提供理想的训练集,因为肿瘤数据将包含仅在ctDNA中可见的遗传变异集。其次,一旦肿瘤中存在的遗传变异被识别出来,学生将评估特定突变的重要性,或所有遗传变异的重要性,例如突变的总数,突变的类型,或cfDNA中ctDNA的比例。为了做到这一点,我们将测试这些特征中的任何一个是否可以用来预测临床因素,如癌症类型、对治疗的反应或预后。有越来越多的研究在一系列癌症类型中观察ctDNA,我们将使用统计荟萃分析来结合多项研究的联合收割机数据。学生将开发机器学习方法,并将其应用于尖端的基因测序数据。该项目有可能改善癌症检测和诊断,并提供治疗见解。学生将受益于一个多学科团队,该团队位于利物浦大学转化医学研究所的统计遗传学和药物遗传学小组,并与正在开发测序技术的工业合作者密切合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
  • 批准号:
    2894296
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
  • 批准号:
    10732745
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
  • 批准号:
    2326879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Improving aerosol and spray process computation fluid dynamics models with machine learning approaches
利用机器学习方法改进气溶胶和喷雾过程计算流体动力学模型
  • 批准号:
    2881557
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Target identification from multiomics data using systems biology and machine learning approaches
使用系统生物学和机器学习方法从多组学数据中识别目标
  • 批准号:
    BB/Y512734/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Constructing a Digital Twin for a self-correcting Scanning Transmission Electron Microscope using Machine Learning Approaches
使用机器学习方法构建自校正扫描透射电子显微镜的数字孪生
  • 批准号:
    2889721
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cheminformatics and Machine Learning approaches for GPCR Computer Aided Drug Design
GPCR 计算机辅助药物设计的化学信息学和机器学习方法
  • 批准号:
    BB/X511778/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了