Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
基本信息
- 批准号:6928993
- 负责人:
- 金额:$ 24.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The broad objective of this project is to develop, study, test, and implement new data adaptive estimation methods for research in Genomics and Epidemiology based on new theoretical results. Existing estimator selection procedures have recently been proved to underestimate the amount of information in finite sample data used for selecting an appropriate estimator of a parameter of interest. Such parameters are by definition used to directly answer Public Health questions of interest. The methods proposed will fully exploit the information contained in data to provide the best estimates of parameters of interest in statistical analyses of data collected for research in Genomics and Epidemiology. These methods will be developed for association analysis, survival, analysis, causal inference, transcription factor binding site detection, microarray data analysis with or without censored data, and for point treatment and longitudinal data. Complex estimation methodologies based on estimating function approaches will be combined to the general methodology considered to provide estimates for complex longitudinal data. The estimation procedure proposed relies on three components: a unified cross-validation estimator selection methodology, construction of sieve-specific estimators, and an aggressive algorithm for generating the corresponding candidate sieve-specific estimators of a parameter of interest so as to thoroughly search the space of all possible estimators. A new method for constructing discrete sieve estimators and data adaptively selecting the corresponding best estimator will be studied and tested in comparison with the construction and selection of common continuous sieve estimators.
Ultimately this project will develop open source, computationally intensive, statistical packages for use with the R and Splus interfaces by researchers in Public Health. These packages will provide black box implementations of a range of data adaptive estimators for problems in Genomics and Epidemiology. They will include routines written in C to enhance the computation speed of the portions of the algorithms that are computationally intensive and will be developed with subject-matter experts to ensure adequacy for the needs of Public Health research. The routines will be applied on publicly available data or real data provided by the subject-matter experts, enabling immediate testing of the proposed methods and software. In addition, simulations imitating real data studies will allow a truthful check of the performance of the methods in comparison to the current estimation methods used. Distribution of these packages for Windows, Linux and Mac OS platforms will use the R and Bio-conductor projects. These packages will include detailed documentation, examples, and data sets.
描述(由申请人提供):该项目的主要目标是开发,研究,测试和实施基于新理论结果的基因组学和流行病学研究的新数据自适应估计方法。现有的估计量选择程序最近被证明低估了有限样本数据中用于选择适当的估计量的参数的兴趣的信息量。根据定义,这些参数用于直接回答感兴趣的公共卫生问题。所提出的方法将充分利用数据中包含的信息,以提供对基因组学和流行病学研究所收集数据的统计分析中感兴趣的参数的最佳估计。这些方法将被开发用于关联分析、生存分析、因果推断、转录因子结合位点检测、有或无删失数据的微阵列数据分析以及点处理和纵向数据。基于估计函数方法的复杂估计方法将与一般方法相结合,以提供复杂纵向数据的估计。建议的估计过程依赖于三个组成部分:一个统一的交叉验证估计量的选择方法,建设特定的筛子估计,和积极的算法,用于生成相应的候选人特定筛子估计的参数的兴趣,以便彻底搜索所有可能的估计空间。本文研究了一种新的构造离散筛估计量和数据自适应地选择相应的最佳估计量的方法,并与常用的连续筛估计量的构造和选择进行了比较。
最终,该项目将开发开源的、计算密集型的统计软件包,供公共卫生领域的研究人员使用R和Splus接口。这些软件包将为基因组学和流行病学中的问题提供一系列数据自适应估计器的黑盒实现。它们将包括用C编写的例程,以提高计算密集型算法部分的计算速度,并将与主题专家一起开发,以确保满足公共卫生研究的需求。这些程序将应用于公开数据或专题专家提供的真实的数据,以便能够立即测试拟议的方法和软件。此外,模拟模拟真实的数据研究将允许一个真实的检查的方法相比,目前使用的估计方法的性能。用于Windows、Linux和Mac OS平台的这些软件包的分发将使用R和Bio-conductor项目。这些软件包将包括详细的文档、示例和数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J Vanderlaan其他文献
Mark J Vanderlaan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J Vanderlaan', 18)}}的其他基金
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
8103011 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7447417 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Learning: Causal Inference Methods for Implementation Science
有针对性的学习:实现科学的因果推理方法
- 批准号:
8659000 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7883449 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7649489 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Learning: Causal Inference Methods for Implementation Science
有针对性的学习:实现科学的因果推理方法
- 批准号:
8900155 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7338072 - 财政年份:2007
- 资助金额:
$ 24.39万 - 项目类别:
Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
- 批准号:
7108630 - 财政年份:2004
- 资助金额:
$ 24.39万 - 项目类别:
Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
- 批准号:
6807110 - 财政年份:2004
- 资助金额:
$ 24.39万 - 项目类别:
相似海外基金
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 24.39万 - 项目类别:
Research Grant
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
- 批准号:
10715568 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
- 批准号:
10743328 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
- 批准号:
10638813 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
- 批准号:
10823828 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
- 批准号:
10721095 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
- 批准号:
10795328 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
- 批准号:
10828252 - 财政年份:2023
- 资助金额:
$ 24.39万 - 项目类别:














{{item.name}}会员




