Computational Biology Core
计算生物学核心
基本信息
- 批准号:7089451
- 负责人:
- 金额:$ 22.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The support provided under Core D reflect a growing trend in studies of
environmental exposure from more traditional epidemiological studies and simple experimental designs to
high-dimensional biology, with its emphasis on 'omic' technologies and complicated questions addressing
the possible interaction of environmental exposures and high-dimensional measures of the genome,
proteome, etc. These high-dimensional data sets are characterized by many (thousands) of measurements
made on only a few independent units (e.g., people). Thus, the Core D reflects a parallel evolution in the
field of biostatistics towards developing methodologies that can both find patterns in high dimensional data
sets as well as providing proper statistical inference for these patterns. Besides offering consulting on
traditional epidemiological experimental design and analysis questions, Core D will focus its efforts on
providing the most relevant and rigorous statistical techniques to the Program's projects. With new 'omic'
technologies, biology has entered a new more empirical phase where the goals of the research are
ambitious (e.g., discovery of regulatory gene networks affected by particular environmental toxicants), but
the sample sizes relatively small (biological replicates numbering in the tens). With these technologies,
have come also a proliferation of proposed methods to find biologically meaningful patterns and typically
little theory is provided to guide their relative worth. The goal of this Core is to provide the project
researchers with the best techniques available, software to help implement them, a computational
environment that can handle computer-intensive methods on large data sets and, most importantly,
rigorous statistical inference for the parameters estimated by these procedures. A subset of the
developments related to the proliferation of high-dimensional biological/epidemiological data particularly
relevant to this proposal are 1) multiple testing, 2) machine-learning and loss-based estimation, 3) grouping
algorithms methods, 4) causal inference and 5) biological metadata and systems biology. In addition, the
Core will provide access to a computational environment that lends itself to the computationally intensive
methods developed for data mining and re-sampling based inference.
核心项目D项下提供的支助反映了以下研究的增长趋势:
传统流行病学研究和简单的实验设计,
高维生物学,其重点是“组学”技术和复杂的问题解决
环境暴露和基因组的高维测量之间可能的相互作用,
这些高维数据集的特征在于许多(数千)测量
仅在几个独立单元上进行(例如,人)。因此,核心D反映了一个平行的演变,
生物统计学领域的发展方法,既可以发现模式,在高维数据
集合,并为这些模式提供适当的统计推断。除了提供咨询,
传统的流行病学实验设计和分析问题,核心D将集中精力
为该计划的项目提供最相关和最严格的统计技术。新的“omic”
随着技术的发展,生物学已经进入了一个新的更加实证的阶段,研究的目标是
雄心勃勃(例如,发现受特定环境毒物影响的调控基因网络),但
样本量相对较小(生物学重复数为数十)。有了这些技术,
也出现了大量的方法来发现生物学上有意义的模式,
很少有理论能够指导它们的相对价值。该核心的目标是提供项目
研究人员与最好的技术,软件,以帮助实现他们,一个计算
环境,可以处理大型数据集上的计算机密集型方法,最重要的是,
通过这些程序估计的参数的严格统计推断。的子集
与高维生物/流行病学数据的扩散有关的发展,
与该建议相关的是1)多重测试,2)机器学习和基于损失的估计,3)分组
算法方法,4)因果推理和5)生物元数据和系统生物学。此外该
核心将提供对计算环境的访问,
为数据挖掘和基于重新采样的推理而开发的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J Vanderlaan其他文献
Mark J Vanderlaan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J Vanderlaan', 18)}}的其他基金
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
8103011 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7447417 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Learning: Causal Inference Methods for Implementation Science
有针对性的学习:实现科学的因果推理方法
- 批准号:
8659000 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7883449 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7649489 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Learning: Causal Inference Methods for Implementation Science
有针对性的学习:实现科学的因果推理方法
- 批准号:
8900155 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Targeted Empirical Super Learning in HIV Research
HIV 研究中有针对性的实证超级学习
- 批准号:
7338072 - 财政年份:2007
- 资助金额:
$ 22.45万 - 项目类别:
Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
- 批准号:
6928993 - 财政年份:2004
- 资助金额:
$ 22.45万 - 项目类别:
Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
- 批准号:
7108630 - 财政年份:2004
- 资助金额:
$ 22.45万 - 项目类别:
Data Adaptive Estimation in Genomics and Epidemiology
基因组学和流行病学中的数据自适应估计
- 批准号:
6807110 - 财政年份:2004
- 资助金额:
$ 22.45万 - 项目类别:
相似海外基金
REU Site: Genomics and Computational biology
REU 网站:基因组学和计算生物学
- 批准号:
2243206 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
FTMA4 - Computational Biology to facilitate analysis and modulation of the function of intrinsically disordered regions in proteins
FTMA4 - 计算生物学,促进蛋白质本质无序区域功能的分析和调节
- 批准号:
BB/X01763X/1 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Training Grant
Predoctoral Training in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训
- 批准号:
10715126 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
- 批准号:
10629061 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
Core A: Biostatistics and Computational Biology Core
核心A:生物统计学和计算生物学核心
- 批准号:
10554475 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Development of Innovative Fat Transplantation Based on Single Cell Analysis and Computational Biology of Subcutaneous Adipose Tissue-Derived Cells
基于皮下脂肪组织来源细胞的单细胞分析和计算生物学的创新脂肪移植的发展
- 批准号:
22H03246 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Medium: Approximate Membership Query Data Structures in Computational Biology and Storage
CSR:中:计算生物学和存储中的近似成员资格查询数据结构
- 批准号:
2317838 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
Using Computational Intelligence for Bioinformatics and Computational Biology
将计算智能用于生物信息学和计算生物学
- 批准号:
575765-2022 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




