Artificial Intelligence utilizing Space assets for Science discovery
人工智能利用太空资产进行科学发现
基本信息
- 批准号:2579004
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Brief description of the context of the research including potential impactThe 2017-2027 Decadal Survey for Earth Science Applications from Space finding 1.1 states that Space-based Earth Observations provide a global perspective of Earth that has transformed our "scientific understanding" of our planet, and the vantage point of space enables us to see the extent to which Earth's ever-changing processes influence our lives. However, the volume of data generated daily by Earth Observation (EO) satellites is far too great for humans to conceivably digest, analyze, and synthesize into meaningful decisions and strategies for climate change mitigation and disaster preparedness. The use of Artificial Intelligence (AI) in combination with space assets can maximize the scientific return of space missions through revealing new connections, aid in autonomous decision making, and improve scientific understanding of complex relationships between ecosystems.Aims and ObjectivesThe aims of this PhD research are to utilize space-based assets for scientific research related to climate disaster mitigation, preparedness and response, and aid in scientific understanding through the use of AI. Deep Learning will be explored in this work, which can unveil previously unknown relationships through extracting information from highly-dimensional data via convolutional neural network architectures to learn spatiotemporal features from timeseries EO datasets. Interpretability and uncertainty quantification of models will also be explored in this work. Interpretability is important as it is crucial to be able to effectively communicate how models generate predictions to stakeholders, policy makers, and governments, as these entities are less likely to adopt these AI solutions as reliable if not clearly understood.Novelty of the research methodologyThe novelty of this research will be the identification and formulation of AI and Machine Learning models that can be applied across scientific domains and use cases. The focus on model explainability, interpretability, and uncertainty is at the beginning stages of exploration for researchers within the AI for EO field, which will be critical to implementing these technologies for real-world use.Alignment to EPSRC's strategies and research areasThis research aligns with multiple EPSRC research areas, namely Artificial intelligencetechnologies, operational research, and the UK climate resilience program.Any companies or collaborators involved The PhD work will be supervised by Professor Yarin Gal and Senior Research Fellow Freddie Kalaitzis. Collaborations with the Satellite Applications Catapult and Deimos Space through an industrial studentship will provide EO expertise to support the research
2017-2027年空间地球科学应用十年调查发现1.1指出,天基地球观测提供了一个全球性的地球视角,改变了我们对地球的“科学理解”,空间的Vantage位置使我们能够看到地球不断变化的过程对我们生活的影响程度。然而,地球观测卫星每天产生的数据量太大,人类无法消化、分析和综合成有意义的决策和战略,以减缓气候变化和备灾。人工智能(AI)与空间资产相结合的使用可以通过揭示新的联系,帮助自主决策,并提高对生态系统之间复杂关系的科学理解,最大限度地提高空间任务的科学回报。Aims and ObjectivesThe aims of this PhD research is to utilize spacebased assets for scientific research related to climate disaster mitigation,preparation and response,并通过使用人工智能来帮助科学理解。深度学习将在这项工作中进行探索,它可以通过卷积神经网络架构从高维数据中提取信息来揭示以前未知的关系,从而从时间序列EO数据集中学习时空特征。在这项工作中,还将探讨模型的可解释性和不确定性量化。可解释性很重要,因为能够有效地向利益相关者、政策制定者和政府传达模型如何生成预测是至关重要的,研究方法的新奇这项研究的新颖性将是识别和制定可以在科学领域和使用中应用的人工智能和机器学习模型。例对模型可解释性、可解释性和不确定性的关注是人工智能领域研究人员探索的开始阶段,这对将这些技术应用于现实世界至关重要。与EPSRC的战略和研究领域保持一致这项研究与EPSRC的多个研究领域保持一致,即人工智能技术,运筹学,和英国的气候弹性计划。任何公司或合作者参与博士工作将由教授亚林加尔和高级研究员弗雷迪Kalaitzis监督。通过工业奖学金与卫星应用弹射器和Deimos Space合作将提供EO专业知识来支持研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Identification of the origins of inherited retinal diseases and clarification of genotype-phenotype correlations based on three major ethnic groups worldwide utilizing artificial intelligence.
利用人工智能,基于全球三个主要种族群体,识别遗传性视网膜疾病的起源并阐明基因型-表型相关性。
- 批准号:
22KJ2665 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Utilizing Artificial Intelligence to Improve the Testing and Debugging of Concurrent Software
利用人工智能改进并发软件的测试和调试
- 批准号:
RGPIN-2018-06588 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10610470 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Utilizing Artificial Intelligence Technology to Understand the Relationship between ESG Scores and Non-Financial Information
利用人工智能技术了解ESG评分与非财务信息之间的关系
- 批准号:
22K13435 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep4D-Radar utilizing Artificial Intelligence and Machine Learning
利用人工智能和机器学习的 Deep4D-Radar
- 批准号:
580846-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Data-Driven Computational Methods Utilizing Artificial Intelligence to Optimize Phenotype in Human Induced Pluripotent Stem Cell Bioprocessing
利用人工智能优化人类诱导多能干细胞生物加工表型的数据驱动计算方法
- 批准号:
546785-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Utilizing Artificial Intelligence to Improve the Testing and Debugging of Concurrent Software
利用人工智能改进并发软件的测试和调试
- 批准号:
RGPIN-2018-06588 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Accurate Leak Detection of Upstream Pipelines using Passive and Active Methods utilizing Artificial Intelligence
利用人工智能的被动和主动方法对上游管道进行准确的泄漏检测
- 批准号:
558438-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
I-Corps: Utilizing Machine learning and Artificial Intelligence (AI) for Early Detection and Identification of Mental Disorders
I-Corps:利用机器学习和人工智能 (AI) 早期检测和识别精神障碍
- 批准号:
2143515 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant