Multiscale mathematical treatise of the invasion-metastasis cascade: from the solitary cancer cell migration to the holistic representation of the org
侵袭转移级联的多尺度数学论文:从孤立的癌细胞迁移到组织的整体表征
基本信息
- 批准号:2589811
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cancer is one of the primer causes of death globally and one of the biggest health problems humanity faces. It is also one of the most complex questions that modern science addresses with the contribution of a multitude of scientific disciplines. Mathematics, in particular contributes, with its predictive competences and the precision of its results, in gaining a deeper understanding of cancer. Moreover, Mathematics enables the development and optimisation of new treatments and early detection strategies becoming thusly an integral part of the eventual cure of cancer. The current PhD project is a part of this overall effort by employing an amalgamation of single- and multiscale mathematical methods with the aim to combine under a unified mathematical umbrella, several of the biomedical processes of the invasion-metastasis cascade. In more detail, we will model and simulate morphological and migratory changes that the cancer cells undergo during the Epithelial-to-Mesenchymal Transition (EMT); a cellular differentiation procedure after which the cells obtain mesenchymal character, break their cell-cell adhesions, and enhance their motility properties. We also study short- and long-range cell-cell interactions and investigate the collective migration of cancer cells and the formation of new cancer cell-clusters. At higher scale, at the level of the tissue, we will address the epithelial movement of a contiguous cluster of cancer cells while allowing for the EMT to take place and give rise to solitary mesenchymal-like cancer cells. When these cancer cells invade the local tissue and reach a nearby blood vessel, they intravasate and enter the blood stream. Of particular importance in the current PhD project will be the modelling of the circulation of cancer cells (termed Circulatory Tumour Cells) in the blood stream and of the subsequent extravasation to new locations in the organism. These cancer cells undergo the opposite Mesenchymal-to-Epithelial Transition (MET) and conditionally engender new tumours; at this stage the metastasis has occurred. The final scale in the development of this PhD project will be the comprehensive combination of the circulatory network and various body organs in a holistic mathematical and computational representation of the organism.
癌症是全球主要死亡原因之一,也是人类面临的最大健康问题之一。这也是现代科学在众多科学学科的贡献下解决的最复杂的问题之一。特别是数学,以其预测能力和结果的精确性,有助于更深入地了解癌症。此外,数学能够开发和优化新的治疗方法和早期检测策略,从而成为最终治愈癌症的一个组成部分。目前的博士项目是这一整体努力的一部分,通过采用单一和多尺度数学方法的合并,目的是在一个统一的数学保护伞下,联合收割机,几个生物医学过程的侵袭-转移级联。更详细地说,我们将建模和模拟癌细胞在上皮间充质转化(EMT)过程中经历的形态和迁移变化;这是一种细胞分化过程,之后细胞获得间充质特性,打破细胞-细胞粘附,并增强其运动特性。我们还研究了短距离和长距离的细胞间相互作用,并研究了癌细胞的集体迁移和新癌细胞簇的形成。在更高的尺度上,在组织水平上,我们将解决癌细胞的连续簇的上皮移动,同时允许EMT发生并产生孤立的间充质样癌细胞。当这些癌细胞侵入局部组织并到达附近的血管时,它们就会渗入并进入血流。在目前的博士项目中特别重要的是对血流中癌细胞(称为循环肿瘤细胞)的循环以及随后外渗到生物体中新位置的建模。这些癌细胞经历相反的间质-上皮转化(MET)并有条件地产生新的肿瘤;在这个阶段已经发生转移。这个博士项目的最终规模将是循环网络和各种身体器官在有机体的整体数学和计算表示中的综合组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Undergraduate Mathematical Science Research at James Madison University
REU 网站:詹姆斯麦迪逊大学本科生数学科学研究
- 批准号:
2349593 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant