NUMERICAL SIMULATION OF SHOCKWAVE LITHOTRIPSY
冲击波碎石术的数值模拟
基本信息
- 批准号:7108515
- 负责人:
- 金额:$ 17.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:biomechanicsbiomedical equipment developmentbiophysicscellular pathologycomputer simulationextracorporeal circulationimaging /visualization /scanningkidney functionlithotripsyluminescencemathematical modelmechanical pressuremechanical stressmodel design /developmentnephrolithiasissound frequencytissue /cell cultureultrasonographyultrasound biological effect
项目摘要
Research in SWL conducted over the past ten years has shown that stresses sufficient to induce both fragmentation and cellular-level tissue damage can result from direct interaction with the focusing shockwave as well as secondary stresses induced by the expansion and collapse of cavitation bubbles.
The proposed research will provide a detailed modeling and simulation of the fluid and solid-dynamical processes that occur both in vitro and in vivo during SWL. The specific aims are:
1. Modeling and computer simulation of the stresses acting on stones and soft tissue that results from the focusing shockwaves and clouds of cavitations bubbles in the fluid state.
2. Computer simulation of the dynamic fracture and fragmentation process in realistic stone models, including tracking the origin and propagation of each fracture.
3. Quantitative assessment of soft tissue damage in anatomically correct finite element models kidneys and individual structures therein.
The modeling effort is closely guided by the extent and nature of the experimental evidence, available from close collaboration with the Program Project Group, that can be used to calibrate and validate the models. These data include quantitative assessment of kidney geometry and damage through digital images from a computer segmentation of pig kidneys, detailed pressure hydrophone measurements in vitro and in vivo, ultra-high-speed photography of bubble clouds and shockwaves, data on stone fragmentation, mechanical testing of strain-rate dependent material behavior, and ultrasound tomography of the structure and fracture of stones. Impact on clinical application will be maximized by working toward an integrated simulation facility capable of full-scale analysis of anatomically and mechanically correct models of stone comminution and tissue injury. The simulation facility will allow unprecedented predictive power that may ultimately show how to pulverize stones with fewer shocks and less renal injury.
过去十年对SWL的研究表明,与聚焦冲击波的直接相互作用以及由空化泡的膨胀和破裂引起的二次应力都可能导致足以导致碎裂和细胞水平组织损伤的应力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIM COLONIUS其他文献
TIM COLONIUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}