NUMERICAL SIMULATION OF SHOCKWAVE LITHOTRIPSY

冲击波碎石术的数值模拟

基本信息

  • 批准号:
    7493013
  • 负责人:
  • 金额:
    $ 18.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Research in SWL conducted over the past ten years has shown that stresses sufficient to induce both fragmentation and cellular-level tissue damage can result from direct interaction with the focusing shockwave as well as secondary stresses induced by the expansion and collapse of cavitation bubbles. The proposed research will provide a detailed modeling and simulation of the fluid and solid-dynamical processes that occur both in vitro and in vivo during SWL. The specific aims are: 1. Modeling and computer simulation of the stresses acting on stones and soft tissue that results from the focusing shockwaves and clouds of cavitations bubbles in the fluid state. 2. Computer simulation of the dynamic fracture and fragmentation process in realistic stone models, including tracking the origin and propagation of each fracture. 3. Quantitative assessment of soft tissue damage in anatomically correct finite element models kidneys and individual structures therein. The modeling effort is closely guided by the extent and nature of the experimental evidence, available from close collaboration with the Program Project Group, that can be used to calibrate and validate the models. These data include quantitative assessment of kidney geometry and damage through digital images from a computer segmentation of pig kidneys, detailed pressure hydrophone measurements in vitro and in vivo, ultra-high-speed photography of bubble clouds and shockwaves, data on stone fragmentation, mechanical testing of strain-rate dependent material behavior, and ultrasound tomography of the structure and fracture of stones. Impact on clinical application will be maximized by working toward an integrated simulation facility capable of full-scale analysis of anatomically and mechanically correct models of stone comminution and tissue injury. The simulation facility will allow unprecedented predictive power that may ultimately show how to pulverize stones with fewer shocks and less renal injury.
在过去十年中进行的SWL研究表明,足以导致碎裂和细胞级别组织损伤的应力可以由与聚焦冲击波的直接相互作用以及空化气泡的膨胀和坍塌引起的次要应力产生。 这项拟议的研究将对SWL过程中发生的体内外流体和固体动力学过程进行详细的建模和模拟。具体目标是: 1.流体状态空化气泡集中激波和云团作用于石材和软组织的应力建模和计算机模拟。 2.计算机模拟真实岩石模型中的动态断裂和破碎过程,包括跟踪每个裂缝的起源和扩展。 3.在解剖学上正确的有限元模型中对软组织损伤进行定量评估。 建模工作受到实验证据的范围和性质的密切指导,实验证据可通过与计划项目组的密切合作获得,可用于校准和验证模型。这些数据包括通过计算机分割猪肾脏的数字图像对肾脏几何形状和损伤的定量评估,体外和体内详细的压力水听器测量,气泡云和冲击波的超高速摄影,结石破碎的数据,应变率相关材料行为的机械测试,以及结石结构和骨折的超声波断层扫描。对临床应用的影响将通过努力建立一个集成的模拟设施来最大化,该设施能够对结石粉碎和组织损伤的解剖和力学正确模型进行全面分析。模拟设备将提供前所未有的预测能力,最终可能会展示如何以更少的冲击和更少的肾脏损伤粉碎结石。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIM COLONIUS其他文献

TIM COLONIUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIM COLONIUS', 18)}}的其他基金

NUMERICAL SIMULATION OF SHOCKWAVE LITHOTRIPSY
冲击波碎石术的数值模拟
  • 批准号:
    6891517
  • 财政年份:
    2004
  • 资助金额:
    $ 18.61万
  • 项目类别:
NUMERICAL SIMULATION OF SHOCKWAVE LITHOTRIPSY
冲击波碎石术的数值模拟
  • 批准号:
    7108515
  • 财政年份:
  • 资助金额:
    $ 18.61万
  • 项目类别:
NUMERICAL SIMULATION OF SHOCKWAVE LITHOTRIPSY
冲击波碎石术的数值模拟
  • 批准号:
    7279973
  • 财政年份:
  • 资助金额:
    $ 18.61万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了