Direct observation of the structure and function of cooperatively assembled membrane spanning pores formed by antimicrobial peptides.

直接观察抗菌肽协同组装的跨膜孔的结构和功能。

基本信息

  • 批准号:
    2592665
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Project Description:The challenge of antimicrobial resistance has ignited interest in understanding the mechanisms of antimicrobial peptides (AMPs) of the innate immune system. AMPs generally form membrane-spanning pores as part of their bactericidal activity, however, the precise mechanisms of assembly and function remain poorly understood. This is in part due to the challenges of interfacing functional model membrane systems with techniques for their interrogation.This project will combine multiple single molecule imaging techniques applied to model membranes [1] to study the mechanisms of peptide interaction of established and novel AMPs. By studying at the single molecule level we can gain otherwise inaccessible insight into the mechanisms of assembly of membrane spanning pores.With this approach you will study the synergistic activity of Magainin-II/PGLa by quantitative three-colour single-molecule imaging to understand the nature of peptide-peptide interactions [2] in pore formation, and quantify the activity dynamics of assembled pores [3]. You will also extend these techniques to novel AMPs developed by the team [4]. Understanding the mechanism of action of such pores will provide fundamental understanding into molecular self-assembly, alongside determining structure-function relationships of the pore itself, fundamental to design novel AMPs. The tested peptides possess cytotoxic activity against cancer cells, so this research may create opportunities for next generation therapeutics and drug delivery systems. Once peptide characterisation is achieved in model membranes you will have the opportunity to study their effect in 2-and-3D cell models.Research Environment: You will work within a multidisciplinary team at the physical-life science interface, gaining experience across disciplines from biochemistry, single molecule techniques, membrane synthetic biology and cell biology. You will initiate the research with rotational projects of peptide and protein synthesis (Jin), and single molecule membrane imaging (Castell), providing a foundation for the research project. The supervisory team have an excellent track record in supervision and publication, alongside a unique combination of expertise from which you and the project will benefit, - e.g. artificial membranes and single molecule methods (Castell), protein/peptide biochemistry (Jin), AMPs and cell biology (Jones) and tissue model and biological imaging (Watson). We applications from enthusiastic scientists with appropriate knowledge/experience/ideas in some of the areas outlined (biochemistry|protein/peptide handling|biological physics|physical chemistry|fluorescence) with an eagerness to learn across disciplines and develop in areas new to the candidate. We do not expect prior experience in all areas. Talented and enthusiastic candidates from all backgrounds are encouraged to apply. We recognise that diversity within a team provides a greater range of experience, perspectives and ideas to draw upon when tackling problems and informing decisions.
项目描述:抗菌素耐药性的挑战激发了人们对了解先天免疫系统抗菌肽(AMP)机制的兴趣。AMP通常形成跨膜孔作为其杀菌活性的一部分,然而,组装和功能的精确机制仍然知之甚少。这部分是由于接口功能模型膜系统的技术,他们的interrogation.This项目的挑战将联合收割机多个单分子成像技术应用于模型膜[1],研究已建立的和新的AMP肽相互作用的机制。通过单分子水平的研究,我们可以获得对跨膜孔组装机制的深入了解,通过这种方法,您将通过定量三色单分子成像来研究Magainin-II/PGLa的协同活性,以了解孔形成中肽-肽相互作用的性质[2],并量化组装孔的活性动力学[3]。您还将这些技术扩展到团队开发的新型AMP [4]。了解这些孔的作用机制将提供对分子自组装的基本理解,同时确定孔本身的结构-功能关系,这是设计新型AMP的基础。测试的肽具有针对癌细胞的细胞毒性活性,因此这项研究可能为下一代治疗和药物递送系统创造机会。一旦在模型膜中实现了肽的表征,您将有机会在二维和三维细胞模型中研究它们的作用。研究环境:您将在物理-生命科学接口的多学科团队中工作,获得生物化学,单分子技术,膜合成生物学和细胞生物学等学科的经验。您将启动肽和蛋白质合成(Jin)和单分子膜成像(Castell)的旋转项目的研究,为研究项目提供基础。监督团队在监督和出版方面有着出色的记录,同时拥有独特的专业知识组合,您和项目将从中受益,例如人工膜和单分子方法(Castell),蛋白质/肽生物化学(Jin),AMP和细胞生物学(Jones)以及组织模型和生物成像(沃森)。我们的申请来自热情的科学家,他们在概述的一些领域(生物化学)具有适当的知识/经验/想法|蛋白质/肽处理|生物物理学|物理化学|具有跨学科学习的渴望,并在候选人的新领域发展。我们并不期望在所有领域都有经验。鼓励来自各种背景的有才华和热情的候选人申请。我们认识到,团队内部的多样性提供了更广泛的经验,观点和想法,可在解决问题和决策时借鉴。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Development of new ferroelectric nanoparticle of fluorite structure through electron microscopy direct observation
电子显微镜直接观察萤石结构新型铁电纳米粒子的研制
  • 批准号:
    18K18952
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Direct single-molecule observation ofregulated SNARE assembly
调节 SNARE 组装的直接单分子观察
  • 批准号:
    9256820
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Clarification of step structure formation on the solution growth interface of SiC by direct interface observation and molecular dynamics simulation
通过直接界面观察和分子动力学模拟阐明 SiC 溶液生长界面上阶梯结构的形成
  • 批准号:
    15H04166
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Direct observation of imhomogeneous structure in cross-linked polymers
直接观察交联聚合物中的不均匀结构
  • 批准号:
    26410138
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultrafast Imaging of Atomic Motions - Towards a Direct Observation of the Structure Function Correla
原子运动的超快成像 - 直接观察结构函数 Correla
  • 批准号:
    432146-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Direct observation of electronic structure at the hetero-interface of trongly-correlated oxides studied by hard x-ray photoemission spectroscopy
硬X射线光电子能谱直接观察强相关氧化物异质界面的电子结构
  • 批准号:
    19740199
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Direct Observation of Electron Density Distribution of the Molecular Orbital Detected by Synchrotron Radiation X-Pay Diffraction
同步辐射X-Pay衍射直接观察分子轨道电子密度分布
  • 批准号:
    18310073
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and application of a rapid analysis method of a nanostructure by direct observation of a reciprocal-lattice space using synchrotron diffraction
利用同步加速器衍射直接观察倒晶格空间的纳米结构快速分析方法的开发和应用
  • 批准号:
    16510096
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research (USC and UCSB): Direct Observation of Depth Variation in Fault Zone Structure Through and Below the Seismogenic Crust
合作研究(USC 和 UCSB):直接观测发震地壳及其下方的断层带结构的深度变化
  • 批准号:
    0309995
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research (USC and UCSB): Direct Observation of Depth Variation in Fault Zone Structure Through and Below the Seismogenic Crust
合作研究(USC 和 UCSB):直接观测发震地壳及其下方的断层带结构的深度变化
  • 批准号:
    0309542
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了