Machine learning to classify periportal fibrosis from point-of-care ultrasound to develop clinical decision support systems for schistosomiasis in sub
机器学习根据护理点超声对门静脉周围纤维化进行分类,以开发亚种血吸虫病的临床决策支持系统
基本信息
- 批准号:2593890
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Schistosomiasis is an infectious disease that is most prevalent in sub-Saharan Africa due to poor access to potable water and sanitation. Over 700 million people are at risk. A parasitic blood fluke causes the conditions related to schistosomiasis. For intestinal schistosomiasis (such as that caused by Schistosoma mansoni), these conditions can include diarrhoea, blood in stool, abdominal distention, gut inflammation, anaemia, enlarged spleens/livers, and in the most severe form periportal fibrosis and portal hypertension. Periportal fibrosis is caused when schistosome eggs are lodged in the portal veins and new branches form to sustain the blood supply to the liver. The mainstay of periportal fibrosis diagnosis is via manual acquisition and grading of liver fibrotic patterns in ultrasound imaging using the World Health Organisation (WHO) Niamey Protocol. This protocol is complex, lengthy, and subject to high inter-reader variability. Advanced expertise in sonography is needed to arrive at the periportal fibrosis grades identified in the Niamey Protocol. In rural poor settings where periportal fibrosis is most prevalent, there is a limited availability of sonographers. The Niamey Protocol was developed for human use before the wide availability of ultrasound devices with the capacity to save images and videos. No updates have been made to the Niamey protocol since its inception in 1996. There is an urgent need to develop automated analyses for periportal fibrosis and investigate whether new features can be detected that are relevant for schistosomal liver disease.To solve this problem, an automated analysis pipeline will be developed that will take an ultrasound video generated from a specific set of simple-to-acquire sweeps of the liver. The main goals will be to produce assistive aids for identifying where fibrosis occurs, produce an automated version of the grading of liver fibrosis according to the Niamey Protocol, and to compare new features/classifications detected to the existing grading procedure. The first step will be to identify the video frames with the best representation of different anatomies in the video, using automated segmentation with supervised and unsupervised approaches. Next, a classifier will be developed to look for features in these images that indicate different grades of fibrosis. The dataset to be analysed will come from SchistoTrack, which is a human participant cohort that was set up to investigate liver fibrosis progression in rural populations in Western and Eastern Uganda.Aims1. To develop a pipeline for automated liver segmentation, identifying relevant anatomy for periportal fibrosis.2. To identify features of fibrosis grades from ultrasound videos and images focused on liver anatomies with validation from a trained sonographer to promote model interpretability and trustworthiness.3. To test the performance of the automated analysis pipeline by identifying robust evaluation metrics apart from accuracy.4. To analyse data from different sites/groupings and consider how these fit into clinical practice in Uganda, including a pilot test in the study areas.This research will make progress in automated abdominal ultrasound segmentation and fibrotic feature detection in the livers. These machine learning-based topics are poorly understood. The main goal is for the analysis and assistive technology pipelines to be accurate, flexible and interpretable, meaning they could be used to aid and train sonographers in sub-Saharan Africa and to contribute to addressing the clinical need for quicker diagnosis and intervention.This project falls within the EPSRC's healthcare technologies theme. It is a collaboration with the Uganda Ministry of Health through the Oxford-Uganda Collaboration on Schistosomiasis and the SchistoTrack human participant cohort.
血吸虫病是一种传染病,由于缺乏饮用水和卫生设施,在撒哈拉以南非洲最为流行。超过7亿人处于危险之中。寄生血吸虫引起血吸虫病相关的条件。对于肠血吸虫病(例如由曼氏血吸虫引起的肠血吸虫病),这些病症可以包括腹泻、便血、腹胀、肠道炎症、贫血、脾/肝肿大,以及最严重的形式的门静脉周围纤维化和门静脉高压症。门静脉周围纤维化是由寄生虫卵停留在门静脉中并形成新的分支以维持肝脏的血液供应而引起的。门静脉周围纤维化诊断的主要方法是使用世界卫生组织(WHO)尼亚美方案,通过超声成像手动采集和分级肝纤维化模式。该方案复杂、冗长,并且受阅片者之间高度可变性的影响。需要超声检查的高级专业知识来达到尼亚美方案中确定的门静脉周围纤维化等级。在农村贫困地区,门静脉周围纤维化最普遍,超声医师的可用性有限。尼亚美协议是在具有保存图像和视频能力的超声设备广泛可用之前为人类使用而开发的。尼亚美议定书自1996年开始实施以来,未作任何更新。目前迫切需要开发门静脉周围纤维化的自动化分析,并研究是否可以检测到与染色体性肝病相关的新特征。为了解决这个问题,将开发一个自动化分析管道,该管道将从一组特定的简单采集的肝脏扫描中生成超声视频。主要目标是制作用于识别纤维化发生位置的辅助工具,根据尼亚美方案制作肝纤维化分级的自动化版本,并将检测到的新特征/分类与现有分级程序进行比较。第一步将是使用有监督和无监督方法的自动分割来识别具有视频中不同解剖结构的最佳表示的视频帧。接下来,将开发一个分类器来寻找这些图像中指示不同级别纤维化的特征。待分析的数据集将来自SchistoTrack,这是一个人类参与者队列,旨在调查乌干达西部和东部农村人群的肝纤维化进展。开发自动肝脏分割的管道,识别门静脉周围纤维化的相关解剖结构。从聚焦于肝脏解剖结构的超声视频和图像中识别纤维化等级的特征,并由经过培训的超声医师进行验证,以提高模型的可解释性和可信度。通过识别除准确性外的稳健评估指标来测试自动化分析管道的性能。分析来自不同地点/分组的数据,并考虑这些数据如何适合乌干达的临床实践,包括在研究领域进行试点测试。这项研究将在自动腹部超声分割和肝脏纤维化特征检测方面取得进展。这些基于机器学习的主题人们知之甚少。主要目标是使分析和辅助技术管道准确、灵活和可解释,这意味着它们可以用于帮助和培训撒哈拉以南非洲的超声医师,并有助于解决更快诊断和干预的临床需求。该项目福尔斯属于EPSRC的医疗技术主题。它是通过牛津-乌干达血吸虫病合作和血吸虫病追踪人类参与者队列与乌干达卫生部合作的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
ToxIndex-CPG: Machine learning driven platform integrating a hazard susceptibility database to quantify chemical toxicity factors, predict risk levels and classify biological responses
ToxIndex-CPG:机器学习驱动的平台,集成危害敏感性数据库,以量化化学毒性因素、预测风险水平并对生物反应进行分类
- 批准号:
10377742 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Pediatric Chronic Headache and COVID-19: Use of Machine Learning and Biobehavioral Analysis to Classify Headache Mechanism and Optimize Treatment Course.
小儿慢性头痛和 COVID-19:利用机器学习和生物行为分析对头痛机制进行分类并优化治疗方案。
- 批准号:
10521562 - 财政年份:2022
- 资助金额:
-- - 项目类别:
RTSS-Voice: Towards a unified system to classify treatments for muscle tension dysphonia
RTSS-Voice:建立一个统一的系统来对肌张力性发声障碍的治疗进行分类
- 批准号:
10705828 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging prior knowledge to classify Indeterminate Lung Nodules in CT images using Deep Neural Networks
利用深度神经网络利用先验知识对 CT 图像中的不确定肺结节进行分类
- 批准号:
10389388 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Pediatric Chronic Headache and COVID-19: Use of Machine Learning and Biobehavioral Analysis to Classify Headache Mechanism and Optimize Treatment Course.
小儿慢性头痛和 COVID-19:利用机器学习和生物行为分析对头痛机制进行分类并优化治疗方案。
- 批准号:
10685407 - 财政年份:2022
- 资助金额:
-- - 项目类别:
RTSS-Voice: Towards a unified system to classify treatments for muscle tension dysphonia
RTSS-Voice:建立一个统一的系统来对肌肉紧张性发声障碍的治疗进行分类
- 批准号:
10584146 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applying machine learning techniques to detect and classify faint tidal features with samples from upcoming large-scale surveys.
应用机器学习技术,利用即将进行的大规模调查的样本来检测和分类微弱的潮汐特征。
- 批准号:
2782601 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Mentoring and Research to Classify Atrial Cardiomyopathy
心房心肌病分类的指导和研究
- 批准号:
10307378 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine learning to classify underpayment claims
机器学习对少付索赔进行分类
- 批准号:
540361-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Long non-coding RNA signatures to classify multiple sclerosis
用于对多发性硬化症进行分类的长非编码 RNA 特征
- 批准号:
9405679 - 财政年份:2016
- 资助金额:
-- - 项目类别: